An example of the psychological stress caused by the Great Depression was the rise in the number of

1. Kessler R.C., Berglund P., Demler O., Jin R., Koretz D., Merikangas K.R., Rush A.J., Walters E.E., Wang P.S. National Comorbidity Survey, R. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–3105. doi: 10.1001/jama.289.23.3095. [PubMed] [CrossRef] [Google Scholar]

2. Mathers C., Boerma T., Fat D.M. The global Burden of Diesease:2004. update. 2008.

3. Nestler E.J., Barrot M., DiLeone R.J., Eisch A.J., Gold S.J., Monteggia L.M. Neurobiology of depression. Neuron. 2002;34(1):13–25. doi: 10.1016/S0896-6273(02)00653-0. [PubMed] [CrossRef] [Google Scholar]

4. Ressler K.J., Mayberg H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 2007;10(9):1116–1124. doi: 10.1038/nn1944. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Byers A.L., Yaffe K. Depression and risk of developing dementia. Nat. Rev. Neurol. 2011;7(6):323–331. doi: 10.1038/nrneurol.2011.60. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Knol M.J., Twisk J.W., Beekman A.T., Heine R.J., Snoek F.J., Pouwer F. Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia. 2006;49(5):837–845. doi: 10.1007/s00125-006-0159-x. [PubMed] [CrossRef] [Google Scholar]

7. Evans D.L., Charney D.S., Lewis L., Golden R.N., Gorman J.M., Krishnan K.R., Nemeroff C.B., Bremner J.D., Carney R.M., Coyne J.C., Delong M.R., Frasure-Smith N., Glassman A.H., Gold P.W., Grant I., Gwyther L., Ironson G., Johnson R.L., Kanner A.M., Katon W.J., Kaufmann P.G., Keefe F.J., Ketter T., Laughren T.P., Leserman J., Lyketsos C.G., McDonald W.M., McEwen B.S., Miller A.H., Musselman D., O(tm)Connor C., Petitto J.M., Pollock B.G., Robinson R.G., Roose S.P., Rowland J., Sheline Y., Sheps D.S., Simon G., Spiegel D., Stunkard A., Sunderland T., Tibbits P., Jr, Valvo W.J. Mood disorders in the medically ill: scientific review and recommendations. Biol. Psychiatry. 2005;58(3):175–189. doi: 10.1016/j.biopsych.2005.05.001. [PubMed] [CrossRef] [Google Scholar]

8. Epel E.S., Blackburn E.H., Lin J., Dhabhar F.S., Adler N.E., Morrow J.D., Cawthon R.M. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA. 2004;101(49):17312–17315. doi: 10.1073/pnas.0407162101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Cizza G., Primma S., Coyle M., Gourgiotis L., Csako G. Depression and osteoporosis: a research synthesis with meta-analysis. Horm. Metab. Res. 2010;42(7):467–482. doi: 10.1055/s-0030-1252020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Whitehead W.E., Palsson O., Jones K.R. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology. 2002;122(4):1140–1156. doi: 10.1053/gast.2002.32392. [PubMed] [CrossRef] [Google Scholar]

11. Krishnan V., Nestler E.J. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902. doi: 10.1038/nature07455. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Berton O., Nestler E.J. New approaches to antidepressant drug discovery: beyond monoamines. Nat. Rev. Neurosci. 2006;7(2):137–151. doi: 10.1038/nrn1846. [PubMed] [CrossRef] [Google Scholar]

13. (a) Uchida S., Hara K., Kobayashi A., Otsuki K., Yamagata H., Hobara T., Suzuki T., Miyata N., Watanabe Y. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69(2):359–372. doi: 10.1016/j.neuron.2010.12.023. [PubMed] [CrossRef] [Google Scholar](b) Bagot R.C., Labonte B., Pena C.J., Nestler E.J. Epigenetic signaling in psychiatric disorders: stress and depression. Nature. 2014;455(7215):894–902. [Google Scholar]

14. Loftis J.M., Hauser P. The phenomenology and treatment of interferon-induced depression. J. Affect. Disord. 2004;82(2):175–190. doi: 10.1016/j.jad.2004.04.002. [PubMed] [CrossRef] [Google Scholar]

15. (a) Wong M.L., Licinio J. Research and treatment approaches to depression. Nat. Rev. Neurosci. 2001;2(5):343–351. doi: 10.1038/35072566. [PubMed] [CrossRef] [Google Scholar] (b) Armbruster D., Mueller A., Strobel A., Lesch K.P., Brocke B., Kirschbaum C. Predicting cortisol stress responses in older individuals: influence of serotonin receptor 1A gene (HTR1A) and stressful life events. Horm. Behav. 2011;60(1):105–111. doi: 10.1016/j.yhbeh.2011.03.010. [PubMed] [CrossRef] [Google Scholar]

16. Hyman S.E. How mice cope with stressful social situations. Cell. 2007;131(2):232–234. doi: 10.1016/j.cell.2007.10.008. [PubMed] [CrossRef] [Google Scholar]

17. Hall J.M., Cruser D., Podawiltz A., Mummert D.I., Jones H., Mummert M.E. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis. Dermatol. Res. Pract. 2012. 2012 403908. [PMC free article] [PubMed] [Google Scholar]

18. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23(5):477–501. doi: 10.1016/S0893-133X(00)00159-7. [PubMed] [CrossRef] [Google Scholar]

19. Pariante C.M., Lightman S.L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31(9):464–468. doi: 10.1016/j.tins.2008.06.006. [PubMed] [CrossRef] [Google Scholar]

20. (a) Abe H., Hidaka N., Kawagoe C., Odagiri K., Watanabe Y., Ikeda T., Ishizuka Y., Hashiguchi H., Takeda R., Nishimori T., Ishida Y. Prenatal psychological stress causes higher emotionality, depression-like behavior, and elevated activity in the hypothalamo-pituitary-adrenal axis. Neurosci. Res. 2007;59(2):145–151. doi: 10.1016/j.neures.2007.06.1465. [PubMed] [CrossRef] [Google Scholar](b) PeAa C.J., Bagot R.C., LabontA(c) B., Nestler E.J. Epigenetic signaling in psychiatric disorders. J. Mol. Biol. 2014;426(20):3389–3412. doi: 10.1016/j.jmb.2014.03.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar](c) Dhabhar F.S. Psychological stress and immunoprotection versus immunopathology in the skin. Clin. Dermatol. 2013;31(1):18–30. doi: 10.1016/j.clindermatol.2011.11.003. [PubMed] [CrossRef] [Google Scholar]

21. (a) Wang Z., Gu J., Wang X., Xie K., Luan Q., Wan N., Zhang Q., Jiang H., Liu D. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol. Biochem. Behav. 2013;112:104–110. doi: 10.1016/j.pbb.2013.10.007. [PubMed] [CrossRef] [Google Scholar](b) Vialou V., Bagot R.C., Cahill M.E., Ferguson D., Robison A.J., Dietz D.M., Fallon B., Mazei-Robison M., Ku S.M., Harrigan E., Winstanley C.A., Joshi T., Feng J., Berton O., Nestler E.J. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of I"FosB. J. Neurosci. 2014;34(11):3878–3887. doi: 10.1523/JNEUROSCI.1787-13.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Maier S.F., Watkins L.R. Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 2005;29(4-5):829–841. doi: 10.1016/j.neubiorev.2005.03.021. [PubMed] [CrossRef] [Google Scholar]

23. (a) Krishnan V., Han M.H., Graham D.L., Berton O., Renthal W., Russo S.J., Laplant Q., Graham A., Lutter M., Lagace D.C., Ghose S., Reister R., Tannous P., Green T.A., Neve R.L., Chakravarty S., Kumar A., Eisch A.J., Self D.W., Lee F.S., Tamminga C.A., Cooper D.C., Gershenfeld H.K., Nestler E.J. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404. doi: 10.1016/j.cell.2007.09.018. [PubMed] [CrossRef] [Google Scholar](b) Wang J., Fanous S., Terwilliger E.F., Bass C.E., Hammer R.P., Jr, Nikulina E.M. BDNF overexpression in the ventral tegmental area prolongs social defeat stress-induced cross-sensitization to amphetamine and increases I"FosB expression in mesocorticolimbic regions of rats. Neuropsychopharmacology. 2013;38(11):2286–2296. doi: 10.1038/npp.2013.130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Chaudhury D., Walsh J.J., Friedman A.K., Juarez B., Ku S.M., Koo J.W., Ferguson D., Tsai H.C., Pomeranz L., Christoffel D.J., Nectow A.R., Ekstrand M., Domingos A., Mazei-Robison M.S., Mouzon E., Lobo M.K., Neve R.L., Friedman J.M., Russo S.J., Deisseroth K., Nestler E.J., Han M.H. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493(7433):532–536. doi: 10.1038/nature11713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. (a) Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol. Rep. 2013;65((6)):1451–1461. doi: 10.1016/S1734-1140(13)71505-6. [PubMed] [CrossRef] [Google Scholar](b) Sung Y.H., Shin M.S., Cho S., Baik H.H., Jin B.K., Chang H.K., Lee E.K., Kim C.J. Depression-like state in maternal rats induced by repeated separation of pups is accompanied by a decrease of cell proliferation and an increase of apoptosis in the hippocampus. Neurosci. Lett. 2010;470(1):86–90. doi: 10.1016/j.neulet.2009.12.063. [PubMed] [CrossRef] [Google Scholar](c) von Poser Toigo E., Diehl L.A., Ferreira A.G., Mackedanz V., Krolow R., Benitz A.N., Noschang C., Huffell A.P., Silveira P.P., Wyse A.T., Dalmaz C. Maternal depression model: long-lasting effects on the mother following separation from pups. Neurochem. Res. 2012;37(1):126–133. doi: 10.1007/s11064-011-0590-3. [PubMed] [CrossRef] [Google Scholar]

26. (a) Yang S.J., Yu H.Y., Kang D.Y., Ma Z.Q., Qu R., Fu Q., Ma S.P. Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats. Pharmacol. Biochem. Behav. 2014;124:451–457. doi: 10.1016/j.pbb.2014.07.015. [PubMed] [CrossRef] [Google Scholar](b) Song C., Leonard B.E. The olfactory bulbectomised rat as a model of depression. Neurosci. Biobehav. Rev. 2005;29(4-5):627–647. doi: 10.1016/j.neubiorev.2005.03.010. [PubMed] [CrossRef] [Google Scholar]

27. Deacon R.M., Croucher A., Rawlins J.N. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav. Brain Res. 2002;132(2):203–213. doi: 10.1016/S0166-4328(01)00401-6. [PubMed] [CrossRef] [Google Scholar]

28. (a) Faria R., Santana M.M., Aveleira C.A., SimAes C., Maciel E., Melo T., Santinha D., Oliveira M.M., Peixoto F., Domingues P., Cavadas C., Domingues M.R. Alterations in phospholipidomic profile in the brain of mouse model of depression induced by chronic unpredictable stress. Neuroscience. 2014;273:1–11. doi: 10.1016/j.neuroscience.2014.04.042. [PubMed] [CrossRef] [Google Scholar](b) Banerjee R., Hazra S., Ghosh A.K., Mondal A.C. Chronic administration of bacopa monniera increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig. 2014;11(3):297–306. doi: 10.4306/pi.2014.11.3.297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Gu H.F., Tang C.K., Yang Y.Z. Psychological stress, immune response, and atherosclerosis. Atherosclerosis. 2012;223(1):69–77. doi: 10.1016/j.atherosclerosis.2012.01.021. [PubMed] [CrossRef] [Google Scholar]

30. Hasan K.M., Rahman M.S., Arif K.M., Sobhani M.E. Psychological stress and aging: role of glucocorticoids (GCs). Age (Dordr.) 2012;34(6):1421–1433. doi: 10.1007/s11357-011-9319-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Keck M.E., Ohl F., Holsboer F., MA1/4ller M.B. Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci. Biobehav. Rev. 2005;29(4-5):867–889. doi: 10.1016/j.neubiorev.2005.03.003. [PubMed] [CrossRef] [Google Scholar]

32. Opel N., Redlich R., Zwanzger P., Grotegerd D., Arolt V., Heindel W., Konrad C., Kugel H., Dannlowski U. Hippocampal atrophy in major depression: a function of childhood maltreatment rather than diagnosis? Neuropsychopharmacology. 2014;39(12):2723–2731. doi: 10.1038/npp.2014.145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Domin H., Szewczyk B., Woniak M., Wawrzak-Wlecia A., smia owska M. Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav. Brain Res. 2014;273:23–33. doi: 10.1016/j.bbr.2014.07.019. [PubMed] [CrossRef] [Google Scholar]

34. Banasr M., Duman R.S. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol. Psychiatry, 2008;64(10):863–870. doi: 10.1016/j.biopsych.2008.06.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Dwivedi Y., Rizavi H.S., Roberts R.C., Conley R.C., Tamminga C.A., Pandey G.N. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J. Neurochem. 2001;77(3):916–928. doi: 10.1046/j.1471-4159.2001.00300.x. [PubMed] [CrossRef] [Google Scholar]

36. Cao X., Li L.P., Wang Q., Wu Q., Hu H.H., Zhang M., Fang Y.Y., Zhang J., Li S.J., Xiong W.C., Yan H.C., Gao Y.B., Liu J.H., Li X.W., Sun L.R., Zeng Y.N., Zhu X.H., Gao T.M. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 2013;19(6):773–777. doi: 10.1038/nm.3162. [PubMed] [CrossRef] [Google Scholar]

37. Schmidt H.D., Duman R.S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav. Pharmacol. 2007;18(5-6 ):391–418. doi: 10.1097/FBP.0b013e3282ee2aa8. [PubMed] [CrossRef] [Google Scholar]

38. (a) Spalding K.L., Bergmann O., Alkass K., Bernard S., Salehpour M., Huttner H.B., Bostrom E., Westerlund I., Vial C., Buchholz B.A., Possnert G., Mash D.C., Druid H., Frisen J. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–1227. doi: 10.1016/j.cell.2013.05.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar](b) Balu D.T., Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci. Biobehav. Rev. 2009;33(3):232–252. doi: 10.1016/j.neubiorev.2008.08.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar](c) Eisch A.J., Petrik D. Depression and hippocampal neurogenesis: a road to remission? 2012. [PMC free article] [PubMed] [CrossRef]

39. Dou X., Tian X., Zheng Y., Huang J., Shen Z., Li H., Wang X., Mo F., Wang W., Wang S., Shen H. Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav. Brain Res. 2014;273:133–138. doi: 10.1016/j.bbr.2014.07.040. [PubMed] [CrossRef] [Google Scholar]

40. Liu B.B., Luo L., Liu X.L., Geng D., Liu Q., Yi L.T. 7- Chlorokynurenic acid (7-CTKA) produces rapid antidepressant-like effects: through regulating hippocampal microRNA expressions involved in TrkB-ERK/Akt signaling pathways in mice exposed to chronic unpredictable mild stress. Psychopharmacology (Berl). 2014 [PubMed] [Google Scholar]

41. Nemeroff C.B., Vale W.W. The neurobiology of depression: inroads to treatment and new drug discovery. J. Clin. Psychiatry. 2005;66(Suppl. 7):5–13. [PubMed] [Google Scholar]

42. Manji H.K., Drevets W.C., Charney D.S. The cellular neurobiology of depression. Nat. Med. 2001;7(5):541–547. doi: 10.1038/87865. [PubMed] [CrossRef] [Google Scholar]

43. (a) Schatzberg A.F., Lindley S. Glucocorticoid antagonists in neuropsychiatric [corrected] disorders. Eur. J. Pharmacol. 2008;583(2-3):358–364. doi: 10.1016/j.ejphar.2008.01.001. [PubMed] [CrossRef] [Google Scholar](b) Yamada K., Kobayashi M., Mori A., Jenner P., Kanda T. Antidepressant-like activity of the adenosine A(2A) receptor antagonist, istradefylline (KW-6002), in the forced swim test and the tail suspension test in rodents. Pharmacol. Biochem. Behav. 2013;114-115:23–30. doi: 10.1016/j.pbb.2013.10.022. [PubMed] [CrossRef] [Google Scholar]

44. Bissette G., Klimek V., Pan J., Stockmeier C., Ordway G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology. 2003;28(7):1328–1335. doi: 10.1038/sj.npp.1300191. [PubMed] [CrossRef] [Google Scholar]

45. Kurada L., Yang C., Lei S. Corticotropin-releasing factor facilitates epileptiform activity in the entorhinal cortex: roles of CRF2 receptors and PKA pathway. PLoS One. 2014;9(2):e88109. doi: 10.1371/journal.pone.0088109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Kormos V., Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides. 2013;47(6):401–419. doi: 10.1016/j.npep.2013.10.014. [PubMed] [CrossRef] [Google Scholar]

47. Holmes A., Heilig M., Rupniak N.M., Steckler T., Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci. 2003;24(11):580–588. doi: 10.1016/j.tips.2003.09.011. [PubMed] [CrossRef] [Google Scholar]

48. Hodgson R.A., Mullins D., Lu S.X., Guzzi M., Zhang X., Bleickardt C.J., Scott J.D., Miller M.W., Stamford A.W., Parker E.M., Varty G.B. Characterization of a novel vasopressin V1b receptor antagonist, V1B-30N, in animal models of anxiety-like and depression-like behavior. Eur. J. Pharmacol. 2014;730:157–163. doi: 10.1016/j.ejphar.2014.02.027. [PubMed] [CrossRef] [Google Scholar]

49. Grassi D., Lagunas N., Calmarza-Font I., Diz-Chaves Y., Garcia-Segura L.M., Panzica G.C. Chronic unpredictable stress and long-term ovariectomy affect arginine-vasopressin expression in the paraventricular nucleus of adult female mice. Brain Res. 2014;1588:55–62. doi: 10.1016/j.brainres.2014.09.006. [PubMed] [CrossRef] [Google Scholar]

50. (a) Simon N.G., Guillon C., Fabio K., Heindel N.D., Lu S.F., Miller M., Ferris C.F., Brownstein M.J., Garripa C., Koppel G.A. Vasopressin antagonists as anxiolytics and antidepressants: recent developments. Recent Patents CNS Drug Discov. 2008;3(2):77–93. doi: 10.2174/157488908784534586. [PubMed] [CrossRef] [Google Scholar](b) Rotzinger S., Lovejoy D.A., Tan L.A. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides. 2010;31(4):736–756. doi: 10.1016/j.peptides.2009.12.015. [PubMed] [CrossRef] [Google Scholar]

51. Keck M.E., Welt T., MA1/4ller M.B., Uhr M., Ohl F., Wigger A., Toschi N., Holsboer F., Landgraf R. Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology. 2003;28(2):235–243. doi: 10.1038/sj.npp.1300040. [PubMed] [CrossRef] [Google Scholar]

52. Wersinger S.R., Ginns E.I., O?(tm)Carroll A.M., Lolait S.J., Young W.S., III Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry. 2002;7(9):975–984. doi: 10.1038/sj.mp.4001195. [PubMed] [CrossRef] [Google Scholar]

53. (a) Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 2010;62(3):405–496. doi: 10.1124/pr.109.002451. [PMC free article] [PubMed] [CrossRef] [Google Scholar](b) DorA A.S., Okrasa K., Patel J.C., Serrano-Vega M., Bennett K., Cooke R.M., Errey J.C., Jazayeri A., Khan S., Tehan B., Weir M., Wiggin G.R., Marshall F.H. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014;511(7511):557–562. doi: 10.1038/nature13396. [PubMed] [CrossRef] [Google Scholar]

54. Hashimoto K. The role of glutamate on the action of antidepressants. Biol. Psychiatry. 2011;35(7):1558–1568. doi: 10.1016/j.pnpbp.2010.06.013. [PubMed] [CrossRef] [Google Scholar]

55. Duman R.S., Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35(1):47–56. doi: 10.1016/j.tins.2011.11.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Feyissa A.M., Chandran A., Stockmeier C.A., Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2009;33(1):70–75. doi: 10.1016/j.pnpbp.2008.10.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Dang Y.H., Ma X.C., Zhang J.C., Ren Q., Wu J., Gao C.G., Hashimoto K. Targeting of NMDA receptors in the treatment of major depression. Curr. Pharm. Des. 2014;20(32):5151–5159. doi: 10.2174/1381612819666140110120435. [PubMed] [CrossRef] [Google Scholar]

58. Jimenez-SAnchez L., Campa L., Auberson Y.P., Adell A. The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology. 2014;39(11):2673–2680. doi: 10.1038/npp.2014.123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Gosek P., Chojnacka M., Bie"kowski P., Swiecicki ?. [Antidepressant effect of ketamine, a N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, in the therapy of treatment-resistant depression]. Psychiatr. Pol. 2012;46(2):283–294. [PubMed] [Google Scholar]

60. Miyamoto Y., Yamada K., Noda Y., Mori H., Mishina M., Nabeshima T. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J. Neurosci. 2002;22(6):2335–2342. [PMC free article] [PubMed] [Google Scholar]

61. Lee C.H., LA1/4 W., Michel J.C., Goehring A., Du J., Song X., Gouaux E. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–197. doi: 10.1038/nature13548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Gould T.D., O?(tm)Donnell K.C., Dow E.R., Du J., Chen G., Manji H.K. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology. 2008;54(3):577–587. doi: 10.1016/j.neuropharm.2007.11.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Koike H., Fukumoto K., Iijima M., Chaki S. Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav. Brain Res. 2013;238:48–52. doi: 10.1016/j.bbr.2012.10.023. [PubMed] [CrossRef] [Google Scholar]

64. MAhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012;62(1):42–53. doi: 10.1016/j.neuropharm.2011.08.040. [PubMed] [CrossRef] [Google Scholar]

65. Yang A.M., Ji Y.K., Su S.F., Yang S.B., Lu S.S., Mi Z.Y., Yang Q.Z., Chen Q. Intracerebroventricular administration of neuronostatin induces depression-like effect in forced swim test of mice. Peptides. 2011;32(9):1948–1952. doi: 10.1016/j.peptides.2011.08.012. [PubMed] [CrossRef] [Google Scholar]

66. Miller P.S., Aricescu A.R. Crystal structure of a human GABAA receptor. Nature. 2014;512(7514):270–275. doi: 10.1038/nature13293. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Feder A., Nestler E.J., Charney D.S. Psychobiology and molecular genetics of resilience. Nat. Rev. Neurosci. 2009;10(6):446–457. doi: 10.1038/nrn2649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Zhu C.B., Blakely R.D., Hewlett W.A. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology. 2006;31(10):2121–2131. doi: 10.1038/sj.npp.1301029. [PubMed] [CrossRef] [Google Scholar]

69. Hassaine G., Deluz C., Grasso L., Wyss R., Tol M.B., Hovius R., Graff A., Stahlberg H., Tomizaki T., Desmyter A., Moreau C., Li X.D., Poitevin F., Vogel H., Nury H. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature. 2014;512(7514):276–281. doi: 10.1038/nature13552. [PubMed] [CrossRef] [Google Scholar]

70. Duman R.S., Monteggia L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry. 2006;59(12):1116–1127. doi: 10.1016/j.biopsych.2006.02.013. [PubMed] [CrossRef] [Google Scholar]

71. Dwivedi Y., Rizavi H.S., Conley R.R., Pandey G.N. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol. Psychiatry. 2006;11(1):86–98. doi: 10.1038/sj.mp.4001744. [PubMed] [CrossRef] [Google Scholar]

72. Iijima M., Fukumoto K., Chaki S. Acute and sustained effects of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test. Behav. Brain Res. 2012;235(2):287–292. doi: 10.1016/j.bbr.2012.08.016. [PubMed] [CrossRef] [Google Scholar]

73. Brennan A.R., Dolinsky B., Vu M.A., Stanley M., Yeckel M.F., Arnsten A.F. Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory. Learn. Mem. 2008;15(3):93–96. doi: 10.1101/lm.767408. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Stone E.A., Lehmann M.L., Lin Y., Quartermain D. Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior. Biol. Psychiatry. 2006;60(8):803–811. doi: 10.1016/j.biopsych.2006.04.020. [PubMed] [CrossRef] [Google Scholar]

75. Palumbo M.L., Zorrilla Zubilete M.A., Cremaschi G.A., Genaro A.M. Different effect of chronic stress on learning and memory in BALB/c and C57BL/6 inbred mice: Involvement of hippocampal NO production and PKC activity. Stress. 2009;12(4):350–361. doi: 10.1080/10253890802506383. [PubMed] [CrossRef] [Google Scholar]

76. Miller C.A. Stressed and depressed? Check your GDNF for epigenetic repression. Neuron. 2011;69(2):188–190. doi: 10.1016/j.neuron.2011.01.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Takebayashi M., Hisaoka K., Nishida A., Tsuchioka M., Miyoshi I., Kozuru T., Hikasa S., Okamoto Y., Shinno H., Morinobu S., Yamawaki S. Decreased levels of whole blood glial cell line-derived neurotrophic factor (GDNF) in remitted patients with mood disorders. Int. J. Neuropsychopharmacol. 2006;9(5):607–612. doi: 10.1017/S1461145705006085. [PubMed] [CrossRef] [Google Scholar]

78. Zhang X., Zhang Z., Sha W., Xie C., Xi G., Zhou H., Zhang Y. Electroconvulsive therapy increases glial cell-line derived neurotrophic factor (GDNF) serum levels in patients with drug-resistant depression. Psychiatry Res. 2009;170(2-3):273–275. doi: 10.1016/j.psychres.2009.01.011. [PubMed] [CrossRef] [Google Scholar]

79. Segerstrom S.C., Miller G.E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004;130(4):601–630. doi: 10.1037/0033-2909.130.4.601. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Liu Y., Ho R.C., Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-I) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord. 2012;139(3):230–239. doi: 10.1016/j.jad.2011.08.003. [PubMed] [CrossRef] [Google Scholar]

81. Reichenberg A., Yirmiya R., Schuld A., Kraus T., Haack M., Morag A., PollmAcher T. Cytokine-associated emotional and cognitive disturbances in humans. Arch. Gen. Psychiatry. 2001;58(5):445–452. doi: 10.1001/archpsyc.58.5.445. [PubMed] [CrossRef] [Google Scholar]

82. Karrenbauer B.D., MA1/4ller C.P., Ho Y.J., Spanagel R., Huston J.P., Schwarting R.K., Pawlak C.R. Time-dependent in-vivo effects of interleukin-2 on neurotransmitters in various cortices: relationships with depressive-related and anxiety-like behaviour. J. Neuroimmunol. 2011;237(1-2):23–32. doi: 10.1016/j.jneuroim.2011.05.011. [PubMed] [CrossRef] [Google Scholar]

83. Wong M-L., Licinio J. Research and treatment approaches to depression. Nat. Rev. Neurosci. 2001;2(5):343–351. doi: 10.1038/35072566. [PubMed] [CrossRef] [Google Scholar]

84. Rothwell N.J., Luheshi G.N. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 2000;23(12):618–625. doi: 10.1016/S0166-2236(00)01661-1. [PubMed] [CrossRef] [Google Scholar]

85. Ericsson A., Liu C., Hart R.P., Sawchenko P.E. Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J. Comp. Neurol. 1995;361(4):681–698. doi: 10.1002/cne.903610410. [PubMed] [CrossRef] [Google Scholar]

86. Koo J.W., Duman R.S. Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Curr. Opin. Investig. Drugs. 2009;10(7):664–671. [PMC free article] [PubMed] [Google Scholar]

87. Ramamoorthy S., Ramamoorthy J.D., Prasad P.D., Bhat G.K., Mahesh V.B., Leibach F.H., Ganapathy V. Regulation of the human serotonin transporter by interleukin-1 beta. Biochem. Biophys. Res. Commun. 1995;216(2):560–567. doi: 10.1006/bbrc.1995.2659. [PubMed] [CrossRef] [Google Scholar]

88. Chourbaji S., Urani A., Inta I., Sanchis-Segura C., Brandwein C., Zink M., Schwaninger M., Gass P. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis. 2006;23(3):587–594. doi: 10.1016/j.nbd.2006.05.001. [PubMed] [CrossRef] [Google Scholar]

89. Kaster M.P., Gadotti V.M., Calixto J.B., Santos A.R., Rodrigues A.L. Depressive-like behavior induced by tumor necrosis factor-I in mice. Neuropharmacology. 2012;62(1):419–426. doi: 10.1016/j.neuropharm.2011.08.018. [PubMed] [CrossRef] [Google Scholar]

90. Dantzer R., O(tm)Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 2008;9(1):46–56. doi: 10.1038/nrn2297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Simen B.B., Duman C.H., Simen A.A., Duman R.S. TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol. Psychiatry. 2006;59(9):775–785. doi: 10.1016/j.biopsych.2005.10.013. [PubMed] [CrossRef] [Google Scholar]

92. Grinvald A., Hildesheim R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 2004;5(11):874–885. doi: 10.1038/nrn1536. [PubMed] [CrossRef] [Google Scholar]

93. (a) Airan R.D., Meltzer L.A., Roy M., Gong Y., Chen H., Deisseroth K. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science. 2007;317(5839): 819–823. doi: 10.1126/science.1144400. [PubMed] [CrossRef] [Google Scholar](b) von Wolff G., Avrabos C., Stepan J., Wurst W., Deussing J.M., Holsboer F., Eder M. Voltage-sensitive dye imaging demonstrates an enhancing effect of corticotropin-releasing hormone on neuronal activity propagation through the hippocampal formation. J. Psychiatr. Res. 2011;45(2):256–261. doi: 10.1016/j.jpsychires.2010.06.007. [PubMed] [CrossRef] [Google Scholar]

94. Yang B., Treweek J.B., Kulkarni R.P., Deverman B.E., Chen C.K., Lubeck E., Shah S., Cai L., Gradinaru V. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158(4):945–958. doi: 10.1016/j.cell.2014.07.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Susaki E.A., Tainaka K., Perrin D., Kishino F., Tawara T., Watanabe T.M., Yokoyama C., Onoe H., Eguchi M., Yamaguchi S., Abe T., Kiyonari H., Shimizu Y., Miyawaki A., Yokota H., Ueda H.R. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157(3):726–739. doi: 10.1016/j.cell.2014.03.042. [PubMed] [CrossRef] [Google Scholar]

96. Chung K., Wallace J., Kim S.Y., Kalyanasundaram S., Andalman A.S., Davidson T.J., Mirzabekov J.J., Zalocusky K.A., Mattis J., Denisin A.K., Pak S., Bernstein H., Ramakrishnan C., Grosenick L., Gradinaru V., Deisseroth K. Structural and molecular interrogation of intact biological systems. Nature. 2013;497(7449):332–337. doi: 10.1038/nature12107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Deisseroth K. Optogenetics. Nat. Methods. 2011;8(1):26–29. doi: 10.1038/nmeth.f.324. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Tye K.M., Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 2012;13(4):251–266. doi: 10.1038/nrn3171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Sparta D.R., Jennings J.H., Ung R.L., Stuber G.D. Optogenetic strategies to investigate neural circuitry engaged by stress. Behav. Brain Res. 2013;255:19–25. doi: 10.1016/j.bbr.2013.05.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Yamaguchi M., Ito A., Ono A., Kawabe Y., Kamihira M. Heat-inducible gene expression system by applying alternating magnetic field to magnetic nanoparticles. ACS Synth. Biol. 2014;3(5):273–279. doi: 10.1021/sb4000838. [PubMed] [CrossRef] [Google Scholar]


Page 2

Animal models and involved factors discussed in brief.

Model Triggers Involved Symptoms Related Factors Acute /Chronic Refs.
Forced swimming test Waters immersion Behavioral desperation HPA axis, corticosterone Acute [21a]
Learned helplessness test Inescapable foot shock Behavioral desperation LHb, VTA, serotonin, dorsal raphe nucleus, CRF Chronic [21b, 22]
Social defeat stress Aggressive counterpart Social avoidance BDNF, VTA mPFC, ΔFosB Chronic [21b, 23]
Reward based tests Food (sucrose), sex, drugs Anhedonia VTA, NAc, PFC, amygdala, Hippocampus, Chronic [24]
Tail-suspension test (in mice only) Restraints Behavioral desperation HPA axis Acute [21a]
Early life stress Maternal separation, prenatal stress Social relationship disruption HPA axis Hippocampus, serotonin Chronic [25]
Olfactory bulbectomy Lesion Irritability IL-1β, TNF-α, HPA axis, hippocampus Chronic [26]
Hyponeophagia Novel environment Reduced appetite Hippocampus Chronic [27]
Chronic unpredictable stress Unpredictable physical factors Anergia, anhedonia HPA axis, SNS, Lipid peroxidation Chronic [28]