Which answer describes the proper sequence order that marketers should follow as they seek to analyze uncontrollable stimuli?

1. Tallis R., Taylor M. Neuromania? RSA Journal. 2011;157(5547) [Google Scholar]

2. Wilson G. F., Eggemeier F. T. Psychophysiological assessment of workload in multitask environments. In: Damos D. L., editor. Multiple Task Performance. London, UK: Taylor and Francis Ltd.; 1991. pp. 329–360. [Google Scholar]

3. Vecchiato G., Borghini G., Aricò P., et al. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks. Medical and Biological Engineering and Computing. 2016;54(10):1503–1513. doi: 10.1007/s11517-015-1420-6. [PubMed] [CrossRef] [Google Scholar]

4. Borghini G., Arico P., Di Flumeri G., et al. Avionic technology testing by using a cognitive neurometric index: a study with professional helicopter pilots. Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); August 2015; Milano, Italy. pp. 6182–6185. [PubMed] [Google Scholar]

5. Borghini G., Arico P., Astolfi L., et al. Frontal EEG theta changes assess the training improvements of novices in flight simulation tasks. Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2013; Osaka, Japan. pp. 6619–6622. [PubMed] [Google Scholar]

6. Sciaraffa N., Borghini G., Aricò P., et al. Brain interaction during cooperation: evaluating local properties of multiple-brain network. Brain Sciences. 2017;7(12):p. 90. doi: 10.3390/brainsci7070090. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Dehais F., Dupres A., Di Flumeri G., et al. Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI. Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); October 2018; Miyazaki, Japan. [Google Scholar]

8. Borghini G., Aricò P., Graziani I., et al. Quantitative assessment of the training improvement in a motor-cognitive task by using EEG, ECG and EOG signals. Brain Topography. 2016;29(1):149–161. doi: 10.1007/s10548-015-0425-7. [PubMed] [CrossRef] [Google Scholar]

9. Aricò P., Borghini G., Di Flumeri G., Colosimo A., Pozzi S., Babiloni F. Progress in Brain Research. Vol. 228. Amsterdam, Netherlands: Elsevier; 2016. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks; pp. 295–328. [PubMed] [Google Scholar]

10. Aricò P., Borghini G., Di Flumeri G., et al. Adaptive automation triggered by EEG-based mental workload index: a passive brain-computer interface application in realistic air traffic control environment. Frontiers in Human Neuroscience. 2016;10:p. 539. doi: 10.3389/fnhum.2016.00539. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Borghini G., Aricò P., Di Flumeri G., et al. EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers. Scientific Reports. 2017;7(1):p. 547. doi: 10.1038/s41598-017-00633-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Di Flumeri G., Borghini G., Aricò P., et al. Symbiotic Interaction. Basel, Switzerland: Springer; 2015. On the use of cognitive neurometric indexes in aeronautic and air traffic management environments; pp. 45–56. [Google Scholar]

13. Borghini G., Aricò P., Di Flumeri G., et al. A new perspective for the training assessment: machine learning-based neurometric for augmented user’s evaluation. Frontiers in Neuroscience. 2017;11:p. 325. doi: 10.3389/fnins.2017.00325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Arico P., Borghini G., Di Flumeri G., et al. Reliability over time of EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks. Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); August 2015; Milano, Italy. pp. 7242–7245. [PubMed] [Google Scholar]

15. Di Flumeri G., Borghini G., Aricò P., et al. Neuroergonomics. Amsterdam, Netherlands: Elsevier; 2019. EEG-based mental workload assessment during real driving; pp. 121–126. [Google Scholar]

16. Di Flumeri G., Borghini G., Aricò P., et al. EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings. Frontiers in Human Neuroscience. 2018;12:p. 509. doi: 10.3389/fnhum.2018.00509. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Maglione A., Borghini G., Arico P., et al. Evaluation of the workload and drowsiness during car driving by using high resolution EEG activity and neurophysiologic indices. Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; August 2014; Chicago, IL, USA. pp. 6238–6241. [PubMed] [Google Scholar]

18. Feyer A. M., Williamson A. M. Human factors in accident modelling. 2010. http://www.ilo.org/safework_bookshelf/english.

19. Aricò P., Borghini G., Di Flumeri G., Sciaraffa N., Babiloni F. Passive BCI beyond the lab: current trends and future directions. Physiological Measurement. 2018;39(8) doi: 10.1088/1361-6579/aad57e.08TR02 [PubMed] [CrossRef] [Google Scholar]

20. Arico P., Borghini G., Di Flumeri G., Sciaraffa N., Colosimo A., Babiloni F. Passive BCI in operational environments: insights, recent advances, and future trends. IEEE Transactions on Biomedical Engineering. 2017;64(7):1431–1436. doi: 10.1109/tbme.2017.2694856. [PubMed] [CrossRef] [Google Scholar]

21. Boucsein W., Backs R. W. Engineering psychophysiology as a discipline: historical and theoretical aspects. In: Backs R.W., Boucsein W., editors. Engineering Psychophysiology: Issues and Applications. London, UK: Lawrence Erlbaum Associates; 2000. pp. 3–30. [Google Scholar]

22. Arico P., Borghini G., Di Flumeri G., et al. Human factors and neurophysiological metrics in air traffic control: a critical review. IEEE Reviews in Biomedical Engineering. 2017;10:250–263. doi: 10.1109/rbme.2017.2694142. [PubMed] [CrossRef] [Google Scholar]

23. Borghini G., Astolfi L., Vecchiato G., Mattia D., Babiloni F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews. 2014;44:58–75. doi: 10.1016/j.neubiorev.2012.10.003. [PubMed] [CrossRef] [Google Scholar]

24. Lal S. K. L., Craig A. A critical review of the psychophysiology of driver fatigue. Biological Psychology. 2001;55(3):173–194. doi: 10.1016/s0301-0511(00)00085-5. [PubMed] [CrossRef] [Google Scholar]

25. Berka C., Levendowski D. J., Lumicao M. N., et al. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, Space, and Environmental Medicine. 2007;78(5):B231–B244. [PubMed] [Google Scholar]

26. Borghini G., Aricò P., Di Flumeri G., Sciaraffa N., Babiloni F. Correlation and similarity between cerebral and non-cerebral electrical activity for user’s states assessment. Sensors. 2019;19(3):p. 704. doi: 10.3390/s19030704. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Di Flumeri G., Aricò P., Borghini G., Sciaraffa N., Di Florio A., Babiloni F. The dry revolution: evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors. 2019;19(6):p. 1365. doi: 10.3390/s19061365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Gluth S., Rieskamp J., Buchel C. Deciding when to decide: time-variant sequential sampling models explain the emergence of value-based decisions in the human brain. Journal of Neuroscience. 2012;32(31):10686–10698. doi: 10.1523/jneurosci.0727-12.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Borghini G., Aricò P., Di Flumeri G., Babiloni F. Vol. 18. Berlin, Germany: Springer; 2017. Industrial neuroscience in aviation: evaluation of mental states in aviation personnel. [Google Scholar]

30. Cherubino P., Maglione A. G., Graziani I., Trettel A., Vecchiato G., Babiloni F. Successful Technological Integration for Competitive Advantage in Retail Settings. Hershey, PA, USA: IGI Global; 2015. Measuring cognitive and emotional processes in retail; pp. 76–92. [Google Scholar]

31. Camerer C. F., Loewenstein G., Prelec D. Neuroeconomics: why economics needs brains. Scandinavian Journal of Economics. 2004;106(3):555–579. doi: 10.1111/j.0347-0520.2004.00377.x. [CrossRef] [Google Scholar]

32. Glimcher P. W., Rustichini A. Neuroeconomics: the consilience of brain and decision. Science. 2004;306(5695):447–452. doi: 10.1126/science.1102566. [PubMed] [CrossRef] [Google Scholar]

33. Braeutigam S. Neuroeconomics—from neural systems to economic behaviour. Brain Research Bulletin. 2005;67(5):355–360. doi: 10.1016/j.brainresbull.2005.06.009. [PubMed] [CrossRef] [Google Scholar]

34. Fehr E., Fischbacher U., Kosfeld M. Neuroeconomic foundations of trust and social preferences: initial evidence. American Economic Review. 2005;95(2):346–351. doi: 10.1257/000282805774669736. [PubMed] [CrossRef] [Google Scholar]

35. Kenning P., Plassmann H. NeuroEconomics: an overview from an economic perspective. Brain Research Bulletin. 2005;67(5):343–354. doi: 10.1016/j.brainresbull.2005.07.006. [PubMed] [CrossRef] [Google Scholar]

36. Sanfey A. G., Loewenstein G., McClure S. M., Cohen J. D. Neuroeconomics: cross-currents in research on decision-making. Trends in Cognitive Sciences. 2006;10(3):108–116. doi: 10.1016/j.tics.2006.01.009. [PubMed] [CrossRef] [Google Scholar]

37. Zeki S., Goodenough O. R., Zak P. J. Neuroeconomics. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2004;359(1451):p. 1737. doi: 10.1098/rstb.2004.1544. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Lee N., Broderick A. J., Chamberlain L. What is ‘neuromarketing’? A discussion and agenda for future research. International Journal of Psychophysiology. 2007;63(2):199–204. doi: 10.1016/j.ijpsycho.2006.03.007. [PubMed] [CrossRef] [Google Scholar]

39. Jordao I. L. D. S., Souza M. T. D., Oliveira J. H. C. D., Giraldi J. D. M. E. Neuromarketing applied to consumer behaviour: an integrative literature review between 2010 and 2015. International Journal of Business Forecasting and Marketing Intelligence. 2017;3(3):270–288. doi: 10.1504/ijbfmi.2017.085371. [CrossRef] [Google Scholar]

40. Riccio A., Holz E. M., Aricò P., et al. Hybrid P300-based brain-computer interface to improve usability for people with severe motor disability: electromyographic signals for error correction during a spelling task. Archives of Physical Medicine and Rehabilitation. 2015;96(3):S54–S61. doi: 10.1016/j.apmr.2014.05.029. [PubMed] [CrossRef] [Google Scholar]

41. Schettini F., Aloise F., Aricò P., Salinari S., Mattia D., Cincotti F. Self-calibration algorithm in an asynchronous P300-based brain–computer interface. Journal of Neural Engineering. 2014;11(3) doi: 10.1088/1741-2560/11/3/035004.035004 [PubMed] [CrossRef] [Google Scholar]

42. Aricò P., Aloise F., Schettini F., Salinari S., Mattia D., Cincotti F. Influence of P300 latency jitter on event related potential-based brain–computer interface performance. Journal of Neural Engineering. 2014;11(3) doi: 10.1088/1741-2560/11/3/035008.035008 [PubMed] [CrossRef] [Google Scholar]

43. Aloise F., Aricò P., Schettini F., Salinari S., Mattia D., Cincotti F. Asynchronous gaze-independent event-related potential-based brain–computer interface. Artificial Intelligence in Medicine. 2013;59(2):61–69. doi: 10.1016/j.artmed.2013.07.006. [PubMed] [CrossRef] [Google Scholar]

44. Vecchiato G., Cherubino P., Trettel A., Babiloni F. Neuroelectrical Brain Imaging Tools for the Study of the Efficacy of TV Advertising Stimuli and Their Application to Neuromarketing. Berlin, Germany: Springer; 2013. [Google Scholar]

45. Boksem M. A. S., Smidts A. Brain responses to movie trailers predict individual preferences for movies and their population-wide commercial success. Journal of Marketing Research. 2015;52(4):482–492. doi: 10.1509/jmr.13.0572. [CrossRef] [Google Scholar]

46. Ariely D., Berns G. S. Neuromarketing: the hope and hype of neuroimaging in business. Nature Reviews Neuroscience. 2010;11(4):284–292. doi: 10.1038/nrn2795. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Kenning P. H., Plassmann H. How neuroscience can inform consumer research. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008;16(6):532–538. doi: 10.1109/tnsre.2008.2009788. [PubMed] [CrossRef] [Google Scholar]

48. Plassmann H., Ambler T., Braeutigam S., Kenning P. What can advertisers learn from neuroscience? International Journal of Advertising. 2007;26(2):151–175. doi: 10.1080/10803548.2007.11073005. [CrossRef] [Google Scholar]

49. Morin C. Neuromarketing: the new science of consumer behavior. Society. 2011;48(2):131–135. doi: 10.1007/s12115-010-9408-1. [CrossRef] [Google Scholar]

50. Smidts A. Kijken in Het brein: Over de Mogelijkheden van Neuromarketing. Rotterdam, Netherlands: Erasmus University Rotterdam; 2002. [Google Scholar]

51. Fisher C. E., Chin L., Klitzman R. Defining neuromarketing: practices and professional challenges. Harvard Review of Psychiatry. 2010;18(4):230–237. doi: 10.3109/10673229.2010.496623. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Fortunato V. C. R., Giraldi J. D. M. E., de Oliveira J. H. C. A review of studies on neuromarketing: practical results, techniques, contributions and limitations. Journal of Management Research. 2014;6(2):p. 201. doi: 10.5296/jmr.v6i2.5446. [CrossRef] [Google Scholar]

53. Olson J., Ray W. Working Paper No. 83-108. USA: Marketing Science Institute, Cambridge, MA 02138; 1983. Brain wave responses to emotional versus attribute oriented television commercials. [Google Scholar]

54. Alwitt L. F. EEF Activity Reflects the Content of Commercials. Cambridge, MA, USA: Marketing Science Institute; 1989. [Google Scholar]

55. Rothschild M. L., Thorson E., Reeves B., Hirsch J. E., Goldstein R. EEG activity and the processing of television commercials. Communication Research. 1986;13(2):182–220. doi: 10.1177/009365086013002003. [CrossRef] [Google Scholar]

56. Rothschild M. L., Hyun Y. J., Reeves B., Thorson E., Goldstein R. Hemispherically lateralized EEG as a response to television commercials. Journal of Consumer Research. 1988;15(2):185–198. doi: 10.1086/209156. [CrossRef] [Google Scholar]

57. Weinstein S., Weinstein C., Drozdenko R. Brain wave analysis: an electroencephalographic technique used for evaluating the communications-effect of advertising. Psychology and Marketing. 1984;1(1):17–42. doi: 10.1002/mar.4220010104. [CrossRef] [Google Scholar]

58. Pradeep A. K., Patel H. The Buying Brain: Secrets for Selling to the Subconscious Mind. New Jersey, NJ, USA: Wiley Hoboken; 2010. [Google Scholar]

59. Schlossberg H. Fear of failure stifles product development. Marketing News. 1990;24(10):1–16. [Google Scholar]

60. White B. Eager sellers and stony buyers. Harvard Business Review. 2006;84(11):p. 153. [Google Scholar]

61. Vecchiato G., Cherubino P., Maglione A. G., et al. How to measure cerebral correlates of emotions in marketing relevant tasks. Cognitive Computation. 2014;6(4):856–871. doi: 10.1007/s12559-014-9304-x. [CrossRef] [Google Scholar]

62. Plassmann H., Ramsøy T. Z., Milosavljevic M. Branding the brain: a critical review and outlook. Journal of Consumer Psychology. 2012;22(1):18–36. doi: 10.1016/j.jcps.2011.11.010. [CrossRef] [Google Scholar]

63. Hubert M., Kenning P. A current overview of consumer neuroscience. Journal of Consumer Behaviour. 2008;7(4-5):272–292. doi: 10.1002/cb.251. [CrossRef] [Google Scholar]

64. Senior C., Lee N. A manifesto for neuromarketing science. Journal of Consumer Behaviour. 2008;7(4-5):263–271. doi: 10.1002/cb.250. [CrossRef] [Google Scholar]

65. Fugate D. L. Neuromarketing: a layman’s look at neuroscience and its potential application to marketing practice. Journal of Consumer Marketing. 2007;24(7):385–394. doi: 10.1108/07363760710834807. [CrossRef] [Google Scholar]

66. Ohme R., Matukin M. A small frog that makes a big difference: brain wave testing of TV advertisements. IEEE Pulse. 2012;3(3):28–33. doi: 10.1109/mpul.2012.2189169. [PubMed] [CrossRef] [Google Scholar]

67. Eser Z., Isin F. B., Tolon M. Perceptions of marketing academics, neurologists, and marketing professionals about neuromarketing. Journal of Marketing Management. 2011;27(7-8):854–868. doi: 10.1080/02672571003719070. [CrossRef] [Google Scholar]

68. Knutson B., Rick S., Wimmer G. E., Prelec D., Loewenstein G. Neural predictors of purchases. Neuron. 2007;53(1):147–156. doi: 10.1016/j.neuron.2006.11.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Garcia J. R., Saad G. Evolutionary neuromarketing: darwinizing the neuroimaging paradigm for consumer behavior. Journal of Consumer Behaviour. 2008;7(4-5):397–414. doi: 10.1002/cb.259. [CrossRef] [Google Scholar]

70. Orzan G., Zara I. A., Purcarea V. L. Neuromarketing techniques in pharmaceutical drugs advertising: a discussion and agenda for future research. Journal of Medicine and Life. 2012;5(4):p. 428. [PMC free article] [PubMed] [Google Scholar]

71. Cartocci G., Maglione A. G., Modica E., Rossi D., Cherubino P., Babiloni F. Against smoking public service announcements, a neurometric evaluation of effectiveness. Proceedings of the Conference Abstract: SAN2016 Meeting; July 2016; Corfu, Greece. Frontiers (Boulder); [CrossRef] [Google Scholar]

72. Cartocci G., Caratù M., Modica E., et al. Electroencephalographic, heart rate, and galvanic skin response assessment for an advertising perception study: application to antismoking public service announcements. Journal of Visualized Experiments. 2017;(126) doi: 10.3791/55872. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Cartocci G., Modica E., Rossi D., et al. Neurophysiological measures of the perception of antismoking public service announcements among young population. Frontiers in Human Neuroscience. 2018;12 doi: 10.3389/fnhum.2018.00231. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Modica E., Rossi D., Cartocci G., et al. Neurophysiological profile of antismoking campaigns. Computational Intelligence and Neuroscience. 2018;2018:11. doi: 10.1155/2018/9721561.9721561 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Rossi D., Modica E., Maglione A. G., et al. Visual evaluation of health warning cues in anti smoking PSAs images. Proceedings of the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI); September 2017; Modena, Italy. pp. 1–5. [CrossRef] [Google Scholar]

76. Kühn S., Strelow E., Gallinat J. Multiple “buy buttons” in the brain: forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. Neuroimage. 2016;136:122–128. doi: 10.1016/j.neuroimage.2016.05.021. [PubMed] [CrossRef] [Google Scholar]

77. Cherubino P., Caratù M., Modica E., et al. Neuroeconomic and Behavioral Aspects of Decision Making. Cham, Switzerland: Springer; 2017. Assessing cerebral and emotional activity during the purchase of fruit and vegetable products in the supermarkets; pp. 293–307. [CrossRef] [Google Scholar]

78. Bennett P. D. AMA Dictionary of Marketing Terms. Lincolnwood, IL, USA: NTC Publ. Gr.; 1995. [Google Scholar]

79. Kahneman D., Egan P. Thinking, Fast and Slow. Vol. 1. New York, NY, USA: Farrar, Straus and Giroux; 2011. [Google Scholar]

80. Erk S., Kiefer M., Grothe J. o., Wunderlich A. P., Spitzer M., Walter H. Emotional context modulates subsequent memory effect. Neuroimage. 2003;18(2):439–447. doi: 10.1016/s1053-8119(02)00015-0. [PubMed] [CrossRef] [Google Scholar]

81. Bechara A., Damasio A. R. The somatic marker hypothesis: a neural theory of economic decision. Games and Economic Behavior. 2005;52(2):336–372. doi: 10.1016/j.geb.2004.06.010. [CrossRef] [Google Scholar]

82. Camerer C., Loewenstein G., Prelec D. Neuroeconomics: how neuroscience can inform economics. Journal of Economic Literature. 2005;43(1):9–64. doi: 10.1257/0022051053737843. [CrossRef] [Google Scholar]

83. Plassmann H., Venkatraman V., Huettel S., Yoon C. Consumer neuroscience: applications, challenges, and possible solutions. Journal of Marketing Research. 2015;52(4):427–435. doi: 10.1509/jmr.14.0048. [CrossRef] [Google Scholar]

84. Wilson R. M., Gaines J., Hill R. P. Neuromarketing and consumer free will. Journal of Consumer Affairs. 2008;42(3):389–410. doi: 10.1111/j.1745-6606.2008.00114.x. [CrossRef] [Google Scholar]

85. Hubert M. Does neuroeconomics give new impetus to economic and consumer research? Journal of Economic Psychology. 2010;31(5):812–817. doi: 10.1016/j.joep.2010.03.009. [CrossRef] [Google Scholar]

86. Lindstrom M. Attività Cerebrale e Comport. D’acquisto. Milano, Italy: Apogeo; 2009. Neuromarketing. [Google Scholar]

87. Lindstrom M. Buy. Ology. A Ciência Do Neuromarketing. Lisboa, Portugal: Gestão Plus; 2009. [Google Scholar]

88. Dooley R. Brandwashing. 2010. https://www.neurosciencemarketing.com/blog/articles/brandwashing.htm.

89. Cartocci G., Maglione A. G., Vecchiato G., et al. Mental workload estimations in unilateral deafened children. Proceeding of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015:1654–1657. [PubMed] [Google Scholar]

90. Di Flumeri G., Herrero M. T., Trettel A., et al. Selected Issues in Experimental Economics. Springer; 2016. EEG frontal asymmetry related to pleasantness of olfactory stimuli in young subjects; pp. 373–381. [CrossRef] [Google Scholar]

91. Rasmussen J. Information Processing and Human–Machine Interaction: An Approach to Cognitive Engineering, North-Holland Series in System Science and Engineering. Vol. 12. New York, NY, USA: North-Holland; 1986. [Google Scholar]

92. Zander T. O., Kothe C. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. Journal of Neural Engineering. 2011;8(2) doi: 10.1088/1741-2560/8/2/025005.025005 [PubMed] [CrossRef] [Google Scholar]

93. Giraudet L., Imbert J.-P., Bérenger M., Tremblay S., Causse M. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EEG/ERP measures. Behavioural Brain Research. 2015;294:246–253. doi: 10.1016/j.bbr.2015.07.041. [PubMed] [CrossRef] [Google Scholar]

94. Parasuraman R., Rizzo M. Neuroergonomics: The Brain at Work. Oxford, UK: Oxford University Press; 2008. [Google Scholar]

95. Borghini G., Aricò P., Di Flumeri G., Babiloni F. Industrial Neuroscience In Aviation. Cham, Switzerland: Springer; 2017. Mental states in aviation; pp. 29–56. [Google Scholar]

96. Wang Y. J., Minor M. S. Validity, reliability, and applicability of psychophysiological techniques in marketing research. Psychology and Marketing. 2008;25(2):197–232. doi: 10.1002/mar.20206. [CrossRef] [Google Scholar]

97. Krugman H. E. Brain wave measures of media involvement. Journal of Advertising Research. 1971;11(1):3–9. [Google Scholar]

98. Olson J. C., Ray W. J. Using Brain-Wave Measures to Assess Advertising Effects. Cambridge, MA, USA: Marketing Science Institute; 1983. [Google Scholar]

99. McClure S. M., Li J., Tomlin D., Cypert K. S., Montague L. M., Montague P. R. Neural correlates of behavioral preference for culturally familiar drinks. Neuron. 2004;44(2):379–387. doi: 10.1016/j.neuron.2004.09.019. [PubMed] [CrossRef] [Google Scholar]

100. Ezquierro Maria Trinidad Herrera G. V., Cherubino P., Maglione A. G., Colosimo A. Tools and techniques to image functional brain activity. International Journal of Bioelectromagnetism. 2012;14(2):84–95. [Google Scholar]

101. Reimann M., Schilke O., Weber B., Neuhaus C., Zaichkowsky J. Functional magnetic resonance imaging in consumer research: a review and application. Psychology and Marketing. 2011;28(6):608–637. doi: 10.1002/mar.20403. [CrossRef] [Google Scholar]

102. Butler M. J. R. Neuromarketing and the perception of knowledge. Journal of Consumer Behaviour. 2008;7(4-5):415–419. doi: 10.1002/cb.260. [CrossRef] [Google Scholar]

103. Zurawicki L. Neuromarketing: Exploring the Brain of the Consumer. Berlin, Germany: Springer Science & Business Media; 2010. [Google Scholar]

104. Calvert G., Spence C., Stein B. E. The Handbook of Multisensory Processes. Cambridge, MA, USA: MIT Press; 2004. [Google Scholar]

105. Bercea M. D. Quantitative versus Qualitative in Neuromarketing Research. Munich, Germany: Munich University Library; 2013. [Google Scholar]

106. Solnais C., Andreu-Perez J., Sánchez-Fernández J., Andréu-Abela J. The contribution of neuroscience to consumer research: a conceptual framework and empirical review. Journal of Economic Psychology. 2013;36:68–81. doi: 10.1016/j.joep.2013.02.011. [CrossRef] [Google Scholar]

107. Jackson P. A., Kennedy D. O. The application of near infrared spectroscopy in nutritional intervention studies. Frontiers in Human Neuroscience. 2013;7:p. 473. doi: 10.3389/fnhum.2013.00473. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Ferrari M., Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921–935. doi: 10.1016/j.neuroimage.2012.03.049. [PubMed] [CrossRef] [Google Scholar]

109. Kopton I. M., Kenning P. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience. 2014;8:p. 549. doi: 10.3389/fnhum.2014.00549. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Piper S. K., Krueger A., Koch S. P., et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage. 2014;85:64–71. doi: 10.1016/j.neuroimage.2013.06.062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Scholkmann F., Kleiser S., Metz A. J., et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014;85:6–27. doi: 10.1016/j.neuroimage.2013.05.004. [PubMed] [CrossRef] [Google Scholar]

112. Pinti P., Aichelburg C., Lind F., et al. Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualized Experiments. 2015;(106) doi: 10.3791/53336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Yoshino K., Oka N., Yamamoto K., Takahashi H., Kato T. Functional brain imaging using near-infrared spectroscopy during actual driving on an expressway. Frontiers in Human Neuroscience. 2013;7:p. 882. doi: 10.3389/fnhum.2013.00882. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Balardin J. B., Zimeo Morais G. A., Furucho R. A., et al. Imaging brain function with functional near-infrared spectroscopy in unconstrained environments. Frontiers in Human Neuroscience. 2017;11:p. 258. doi: 10.3389/fnhum.2017.00258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Krampe C., Strelow E., Haas A., Kenning P. The application of mobile fNIRS to “shopper neuroscience”—first insights from a merchandising communication study. European Journal of Marketing. 2018;52(1-2):244–259. doi: 10.1108/ejm-12-2016-0727. [CrossRef] [Google Scholar]

116. Meyerding S. G. H., Mehlhose C. M. Can neuromarketing add value to the traditional marketing research? An exemplary experiment with functional near-infrared spectroscopy (fNIRS) Journal of Business Research. 2018 doi: 10.1016/j.jbusres.2018.10.052. [CrossRef] [Google Scholar]

117. Lang P. J., Bradley M. M., Cuthbert B. N. Attention and Sensory and Motivational Processes. Vol. 97. London, UK: Taylor & Francis; 1997. Motivated attention: affect, activation, and action; p. p. 135. [Google Scholar]

118. Russell J. A., Barrett L. F. Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. Journal of Personality and Social Psychology. 1999;76(5):805–819. doi: 10.1037/0022-3514.76.5.805. [PubMed] [CrossRef] [Google Scholar]

119. Critchley H. D. Review: electrodermal responses: what happens in the brain. The Neuroscientist. 2002;8(2):132–142. doi: 10.1177/107385840200800209. [PubMed] [CrossRef] [Google Scholar]

120. Baldaro B., Mazzetti M., Codispoti M., Tuozzi G., Bolzani R., Trombini G. Autonomic reactivity during viewing of an unpleasant film. Perceptual and Motor Skills. 2001;93(3):797–805. doi: 10.2466/pms.93.7.797-805. [PubMed] [CrossRef] [Google Scholar]

121. Feldman Barrett L., Russell J. A. Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology. 1998;74(4):967–984. doi: 10.1037//0022-3514.74.4.967. [CrossRef] [Google Scholar]

122. Hoffman J. E. Visual attention and eye movements. Attention. 1998;31:119–153. [Google Scholar]

123. Chavaglia J. N., Filipe J. A., Ramalheiro B. Neuromarketing: consumers and the anchoring effect. International Journal of Latest Trends in Finance and Economic Sciences. 2011;4:183–189. [Google Scholar]

124. Veneri G., Federighi P., Rosini F., Federico A., Rufa A. Influences of data filtering on human-computer interaction by gaze-contingent display and eye-tracking applications. Computers in Human Behavior. 2010;26(6):1555–1563. doi: 10.1016/j.chb.2010.05.030. [CrossRef] [Google Scholar]

125. Vidal M., Turner J., Bulling A., Gellersen H. Wearable eye tracking for mental health monitoring. Computer Communications. 2012;35(11):1306–1311. doi: 10.1016/j.comcom.2011.11.002. [CrossRef] [Google Scholar]

126. Rayner K. The 35th Sir Frederick Bartlett Lecture: eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology. 2009;62(8):1457–1506. doi: 10.1080/17470210902816461. [PubMed] [CrossRef] [Google Scholar]

127. Lupu R. G., Ungureanu F. A survey of eye tracking methods and applications. Buletinul Institutului Politehnic din Iaşi. 2013;3:72–86. [Google Scholar]

128. Popa L., Selejan O., Scott A., Mureşanu D. F., Balea M., Rafila A. Reading beyond the glance: eye tracking in neurosciences. Neurological Sciences. 2015;36(5):683–688. doi: 10.1007/s10072-015-2076-6. [PubMed] [CrossRef] [Google Scholar]

129. King A. J., Bol N., Cummins R. G., John K. K. Improving visual behavior research in communication science: an overview, review, and reporting recommendations for using eye-tracking methods. Communication Methods and Measures. 2019;13(3):149–177. doi: 10.1080/19312458.2018.1558194. [CrossRef] [Google Scholar]

130. Zhao Q., Koch C. Learning saliency-based visual attention: a review. Signal Processing. 2013;93(6):1401–1407. doi: 10.1016/j.sigpro.2012.06.014. [CrossRef] [Google Scholar]

131. Piqueras-Fiszman B., Velasco C., Salgado-Montejo A., Spence C. Using combined eye tracking and word association in order to assess novel packaging solutions: a case study involving jam jars. Food Quality and Preference. 2013;28(1):328–338. doi: 10.1016/j.foodqual.2012.10.006. [CrossRef] [Google Scholar]

132. Chae S. W., Lee K. C. Exploring the effect of the human brand on consumers’ decision quality in online shopping. Online Information Review. 2013;37(1):83–100. doi: 10.1108/14684521311311649. [CrossRef] [Google Scholar]

133. Orquin J. L., Mueller Loose S. Attention and choice: a review on eye movements in decision making. Acta Psychologica. 2013;144(1):190–206. doi: 10.1016/j.actpsy.2013.06.003. [PubMed] [CrossRef] [Google Scholar]

134. Behe B. K., Zhao J., Sage L., Huddleston P. T., Minahan S. Display signs and involvement: the visual path to purchase intention. The International Review of Retail, Distribution and Consumer Research. 2013;23(5):511–522. doi: 10.1080/09593969.2013.832695. [CrossRef] [Google Scholar]

135. Pieters R., Wedel M. Attention capture and transfer in advertising: brand, pictorial, and text-size effects. Journal of Marketing. 2004;68(2):36–50. doi: 10.1509/jmkg.68.2.36.27794. [CrossRef] [Google Scholar]

136. Kumar H., Mathur N., Jauhari S. Neuromarketing: a new agenda for marketing researches with particular reference to eye tracking. International Journal of Core Engineering and Management. 2016;3(2) [Google Scholar]

137. Ekman P. Darwin, deception, and facial expression. Annals of the New York Academy of Sciences. 2003;1000(1):205–221. doi: 10.1196/annals.1280.010. [PubMed] [CrossRef] [Google Scholar]

138. Jack R. E., Schyns P. G. The human face as a dynamic tool for social communication. Current Biology. 2015;25(14):R621–R634. doi: 10.1016/j.cub.2015.05.052. [PubMed] [CrossRef] [Google Scholar]

139. Hazlett R. L., Hazlett S. Y. Emotional response to television commercials: facial EMG vs. self-report. Journal of Advertising Research. 1999;39(2):p. 7. [Google Scholar]

140. Somervuori O., Ravaja N. Purchase behavior and psychophysiological responses to different price levels. Psychology and Marketing. 2013;30(6):479–489. doi: 10.1002/mar.20621. [CrossRef] [Google Scholar]

141. Ahn S. J., Jabon M. E., Bailenson J. N. Facial expressions as predictors of online buying intention. Proceedings of the 58th Annual International Communication Association Conference; May 2008; Montreal, Canada. pp. 22–26. [Google Scholar]

142. McDuff D., Kaliouby R. E., Cohn J. F., Picard R. W. Predicting ad liking and purchase intent: large-scale analysis of facial responses to ads. IEEE Transactions on Affective Computing. 2015;6(3):223–235. doi: 10.1109/taffc.2014.2384198. [CrossRef] [Google Scholar]

143. Lewinski P., Fransen M. L., Tan E. S. H. Predicting advertising effectiveness by facial expressions in response to amusing persuasive stimuli. Journal of Neuroscience, Psychology, and Economics. 2014;7(1):1–14. doi: 10.1037/npe0000012. [CrossRef] [Google Scholar]

144. Garczarek-Bąk U., Disterheft A. EEG frontal asymmetry predicts FMCG product purchase differently for national brands and private labels. Journal of Neuroscience, Psychology, and Economics. 2018;11(3):182–195. doi: 10.1037/npe0000094. [CrossRef] [Google Scholar]

145. Liaudanskaitė G., Saulytė G., Jakutavičius J., Vaičiukynaitė E., Zailskaitė-Jakštė L., Damaševičius R. Analysis of affective and gender factors in image comprehension of visual advertisement. Proceedings of the Computer Science On-Line Conference; April 2018; Vsetin, Czech Republic. pp. 1–11. [Google Scholar]

146. Hadinejad A., Moyle B. D., Scott N., Kralj A. Emotional responses to tourism advertisements: the application of FaceReader. Tourism Recreation Research. 2019;44(1):131–135. doi: 10.1080/02508281.2018.1505228. [CrossRef] [Google Scholar]

147. Gregg A., Maison D. Routledge International Handbook of Consumer Psychology. Abingdon, UK: Routledge; 2016. Capturing the consumer’s unconscious: applying the implicit association test in consumer research; pp. 161–182. [Google Scholar]

148. Gani M. O., Reza S. S., Rabi M. R. I., Reza S. S. Neuromarketing: methodologies of marketing science. Proceedings of the 3rd International Conference on Advances in Economics, Management and Social Study; December 2015; Changsha, China. [Google Scholar]

149. Greenwald A. G., McGhee D. E., Schwartz J. L. K. Measuring individual differences in implicit cognition: the implicit association test. Journal of Personality and Social Psychology. 1998;74(6):1464–1480. doi: 10.1037/0022-3514.74.6.1464. [PubMed] [CrossRef] [Google Scholar]

150. De Houwer J. The extrinsic affective Simon task. Experimental Psychology. 2003;50(2):77–85. doi: 10.1026//1618-3169.50.2.77. [PubMed] [CrossRef] [Google Scholar]

151. Barnes-Holmes D., Barnes-Holmes Y., Stewart I., Boles S. A sketch of the implicit relational assessment procedure (IRAP) and the relational elaboration and coherence (REC) model. The Psychological Record. 2010;60(3):527–542. doi: 10.1007/bf03395726. [CrossRef] [Google Scholar]

152. Klauer K. C., Musch J. The Psychology of Evaluation: Affective Processes in Cognition and Emotion. Mahwah, NJ, USA: Lawrence Erlbaum Associates; 2003. Affective priming: findings and theories; pp. 7–49. [Google Scholar]

153. Wittenbrink B., Judd C. M., Park B. Evidence for racial prejudice at the implicit level and its relationship with questionnaire measures. Journal of Personality and Social Psychology. 1997;72(2):262–274. doi: 10.1037/0022-3514.72.2.262. [PubMed] [CrossRef] [Google Scholar]

154. Tremblay L., Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature. 1999;398(6729):704–708. doi: 10.1038/19525. [PubMed] [CrossRef] [Google Scholar]

155. Daw N. D., O’Doherty J. P., Dayan P., Seymour B., Dolan R. J. Cortical substrates for exploratory decisions in humans. Nature. 2006;441(7095):876–879. doi: 10.1038/nature04766. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Wallis J. D. Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience. 2007;30(1):31–56. doi: 10.1146/annurev.neuro.30.051606.094334. [PubMed] [CrossRef] [Google Scholar]

157. Elliott R., Dolan R. J., Frith C. D. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cerebral Cortex. 2000;10(3):308–317. doi: 10.1093/cercor/10.3.308. [PubMed] [CrossRef] [Google Scholar]

158. Rilling J. K., King-Casas B., Sanfey A. G. The neurobiology of social decision-making. Current Opinion in Neurobiology. 2008;18(2):159–165. doi: 10.1016/j.conb.2008.06.003. [PubMed] [CrossRef] [Google Scholar]

159. Rilling J. K., Sanfey A. G. The neuroscience of social decision-making. Annual Review of Psychology. 2011;62(1):23–48. doi: 10.1146/annurev.psych.121208.131647. [PubMed] [CrossRef] [Google Scholar]

160. Gonzalez C., Dana J., Koshino H., Just M. The framing effect and risky decisions: examining cognitive functions with fMRI. Journal of Economic Psychology. 2005;26(1):1–20. doi: 10.1016/j.joep.2004.08.004. [CrossRef] [Google Scholar]

161. Berridge K. C. Food reward: brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews. 1996;20(1):1–25. doi: 10.1016/0149-7634(95)00033-b. [PubMed] [CrossRef] [Google Scholar]

162. Knutson B., Adams C. M., Fong G. W., Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience. 2001;21(16):p. RC159. doi: 10.1523/jneurosci.21-16-j0002.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Wise R., Rompre P.-P. Brain dopamine and reward. Annual Review of Psychology. 1989;40(1):191–225. doi: 10.1146/annurev.ps.40.020189.001203. [PubMed] [CrossRef] [Google Scholar]

164. Knutson B., Wimmer G. E. Splitting the difference: how does the brain code reward episodes? Annals of the New York Academy of Sciences. 2007;1104(1):54–69. doi: 10.1196/annals.1390.020. [PubMed] [CrossRef] [Google Scholar]

165. Fliessbach K., Weber B., Trautner P., et al. Social comparison affects reward-related brain activity in the human ventral striatum. Science. 2007;318(5854):1305–1308. doi: 10.1126/science.1145876. [PubMed] [CrossRef] [Google Scholar]

166. Fields H. L., Hjelmstad G. O., Margolis E. B., Nicola S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annual Review of Neuroscience. 2007;30(1):289–316. doi: 10.1146/annurev.neuro.30.051606.094341. [PubMed] [CrossRef] [Google Scholar]

167. Wilson M. Six views of embodied cognition. Psychonomic Bulletin and Review. 2002;9(4):625–636. doi: 10.3758/bf03196322. [PubMed] [CrossRef] [Google Scholar]

168. Knudsen E. I. Fundamental components of attention. Annual Review of Neuroscience. 2007;30(1):57–78. doi: 10.1146/annurev.neuro.30.051606.094256. [PubMed] [CrossRef] [Google Scholar]

169. Armstrong K. M., Fitzgerald J. K., Moore T. Changes in visual receptive fields with microstimulation of frontal cortex. Neuron. 2006;50(5):791–798. doi: 10.1016/j.neuron.2006.05.010. [PubMed] [CrossRef] [Google Scholar]

170. Shiffrin R. M., Atkinson R. C. Storage and retrieval processes in long-term memory. Psychological Review. 1969;76(2):179–193. doi: 10.1037/h0027277. [CrossRef] [Google Scholar]

171. McGaugh J. L. Memory—a century of consolidation. Science. 2000;287(5451):248–251. doi: 10.1126/science.287.5451.248. [PubMed] [CrossRef] [Google Scholar]

172. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience. 2000;1(1):41–50. doi: 10.1038/35036213. [PubMed] [CrossRef] [Google Scholar]

173. Sweller J. Cognitive load during problem solving: effects on learning. Cognitive Science. 1988;12(2):257–285. doi: 10.1016/0364-0213(88)90023-7. [CrossRef] [Google Scholar]

174. Gopher D., Donchin E. Workload: an examination of the concept. In: Boff K. R., Kaufman L., Thomas J.P., editors. Handbook of Perception and Human Performance. Vol. 2. Hoboken, NJ, USA: Wiley & Sons; 1986. pp. 1–49. [Google Scholar]

175. Hart S. G., Staveland L. E. Development of NASA-TLX (task load index): results of empirical and theoretical research. Advances in Psychology. 1988;52:139–183. doi: 10.1016/s0166-4115(08)62386-9. [CrossRef] [Google Scholar]

176. Eggemeier F. T., Wilson G. F. Multiple-Task Performance. London, UK: Taylor & Francis; 1991. Performance-based and subjective assessment of workload in multi-task environments; pp. 217–278. [Google Scholar]

177. Aricò P., Borghini G., Graziani I., et al. Towards a multimodal bioelectrical framework for the online mental workload evaluation. Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC); August 2014; Chicago, IL, USA. pp. 3001–3004. [PubMed] [CrossRef] [Google Scholar]

178. Gundel A., Wilson G. F. Topographical changes in the ongoing EEG related to the difficulty of mental tasks. Brain Topography. 1992;5(1):17–25. doi: 10.1007/bf01129966. [PubMed] [CrossRef] [Google Scholar]

179. Sanfey A. G., Rilling J. K., Aronson J. A., Nystrom L. E., Cohen J. D. The neural basis of economic decision-making in the ultimatum game. Science. 2003;300(5626):1755–1758. doi: 10.1126/science.1082976. [PubMed] [CrossRef] [Google Scholar]

180. Langleben D. D., Loughead J. W., Ruparel K., et al. Reduced prefrontal and temporal processing and recall of high “sensation value” ads. Neuroimage. 2009;46(1):219–225. doi: 10.1016/j.neuroimage.2008.12.062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Vecchiato G., Astolfi L., De Vico Fallani F., et al. Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topography. 2010;23(2):165–179. doi: 10.1007/s10548-009-0127-0. [PubMed] [CrossRef] [Google Scholar]

182. Davidson R. J., Irwin W. The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences. 1999;3(1):11–21. doi: 10.1016/s1364-6613(98)01265-0. [PubMed] [CrossRef] [Google Scholar]

183. Davidson R. J. Affective style, psychopathology, and resilience: brain mechanisms and plasticity. American Psychologist. 2000;55(11):1196–1214. doi: 10.1037//0003-066x.55.11.1196. [PubMed] [CrossRef] [Google Scholar]

184. Davidson R. J. What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biological Psychology. 2004;67(1-2):219–234. doi: 10.1016/j.biopsycho.2004.03.008. [PubMed] [CrossRef] [Google Scholar]

185. Small D. M., Zatorre R. J., Dagher A., Evans A. C., Jones-Gotman M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain. 2001;124(9):1720–1733. doi: 10.1093/brain/124.9.1720. [PubMed] [CrossRef] [Google Scholar]

186. Small D. M., Gregory M. D., Mak Y. E., Gitelman D., Mesulam M. M., Parrish T. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003;39(4):701–711. doi: 10.1016/s0896-6273(03)00467-7. [PubMed] [CrossRef] [Google Scholar]

187. O’Doherty J., Kringelbach M. L., Rolls E. T., Hornak J., Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience. 2001;4(1):95–102. doi: 10.1038/82959. [PubMed] [CrossRef] [Google Scholar]

188. Davidson R. J., Ekman P., Saron C. D., Senulis J. A., Friesen W. V. Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I. Journal of Personality and Social Psychology. 1990;58(2):330–341. doi: 10.1037/0022-3514.58.2.330. [PubMed] [CrossRef] [Google Scholar]

189. Chai J., Ge Y., Liu Y., et al. Application of frontal EEG asymmetry to user experience research. Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics; June 2014; Heraklion, Greece. pp. 234–243. [Google Scholar]

190. Dulabh M., Vazquez D., Ryding D., Casson A. Augmented Reality and Virtual Reality. Cham, Switzerland: Springer; 2018. Measuring consumer engagement in the brain to online interactive shopping environments; pp. 145–165. [CrossRef] [Google Scholar]

191. Çakar T., Rızvanoğlu K., Öztürk Ö., Çelik D. Z., Gürvardar İ. The use of neurometric and biometric research methods in understanding the user experience during product search of first-time buyers in E-commerce. Proceedings of the International Conference of Design, User Experience, and Usability; July 2017; Vancouver, Canada. pp. 342–362. [Google Scholar]

192. Babiloni F., Rossi D., Cherubino P., et al. A neuroaesthetic study of the cerebral perception and appreciation of paintings by titian using EEG and eyetracker measurements. Proceedings of the International Workshop on Symbiotic Interaction; September 2015; Padua, Italy. [Google Scholar]

193. Babiloni F., Cherubino P., Graziani I., et al. Neuroelectric brain imaging during a real visit of a fine arts gallery: a neuroaesthetic study of XVII century Dutch painters. Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC); July 2013; Osaka, Japan. pp. 6179–6182. [PubMed] [CrossRef] [Google Scholar]

194. Modica E., Rossi D., Cherubino P., et al. Cerebral perception and appreciation of real paintings and sculptures by neuroelectric imaging. International Journal of Bioelectromagnetism. 2016;18(2):46–52. [Google Scholar]

195. Caldato C., Benedetto S., Bazzan E., Rodighiero L., Mauri M. Emotional impact played by art experience measured by means of neuroscientific techniques and traditional interviews. Proceedings of the Measuring Behavior 2018 Conference; June 2018; Manchester, UK. [Google Scholar]

196. Maglione A. G., Brizi A., Vecchiato G., et al. A neuroelectrical brain imaging study on the perception of figurative paintings against only their color or shape contents. Frontiers in Human Neuroscience. 2017;11:p. 378. doi: 10.3389/fnhum.2017.00378. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Caratù M., Cherubino P., Mattiacci A. Application of neuro-marketing techniques to the wine tasting experience. Proceedings of the 11th Annual Conference of the EuroMed Academy of Business; September 2018; Valletta, Malta. [Google Scholar]

198. Cherubino P., Cartocci G., Modica E., et al. Wine tasting: how much is the contribution of the olfaction?. Proceedings of the International Conference on Computational Methods in Experimental Economics; November-December 2017; Lublin, Poland. pp. 199–209. [CrossRef] [Google Scholar]

199. Di Flumeri G., Arico P., Borghini G., et al. EEG-based approach-withdrawal index for the pleasantness evaluation during taste experience in realistic settings. Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC); July 2017; Jeju Island, South Korea. pp. 3228–3231. [PubMed] [CrossRef] [Google Scholar]

200. Maren S., Quirk G. J. Neuronal signalling of fear memory. Nature Reviews Neuroscience. 2004;5(11):844–852. doi: 10.1038/nrn1535. [PubMed] [CrossRef] [Google Scholar]

201. Preuschoff K., Quartz S. R., Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience. 2008;28(11):2745–2752. doi: 10.1523/jneurosci.4286-07.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Knutson B., Bossaerts P. Neural antecedents of financial decisions. Journal of Neuroscience. 2007;27(31):8174–8177. doi: 10.1523/jneurosci.1564-07.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Coricelli G., Critchley H. D., Joffily M., O’Doherty J. P., Sirigu A., Dolan R. J. Regret and its avoidance: a neuroimaging study of choice behavior. Nature Neuroscience. 2005;8(9):1255–1262. doi: 10.1038/nn1514. [PubMed] [CrossRef] [Google Scholar]

204. Bush G., Luu P., Posner M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences. 2000;4(6):215–222. doi: 10.1016/s1364-6613(00)01483-2. [PubMed] [CrossRef] [Google Scholar]

205. Reimann M., Bechara A. The somatic marker framework as a neurological theory of decision-making: review, conceptual comparisons, and future neuroeconomics research. Journal of Economic Psychology. 2010;31(5):767–776. doi: 10.1016/j.joep.2010.03.002. [CrossRef] [Google Scholar]

206. Bagozzi R. P., Gopinath M., Nyer P. U. The role of emotions in marketing. Journal of the Academy of Marketing Science. 1999;27(2):184–206. doi: 10.1177/0092070399272005. [CrossRef] [Google Scholar]

207. Phan K. L., Wager T., Taylor S. F., Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage. 2002;16(2):331–348. doi: 10.1006/nimg.2002.1087. [PubMed] [CrossRef] [Google Scholar]

208. Bagozzi R. P. Handbook of Consumer Behavior. Englewood Cliffs, NJ, USA: Prentice-Hall; 1991. The role of psychophysiology in consumer research; pp. 124–161. [Google Scholar]

209. Winkielman P., Berntson G. G., Cacioppo J. T. Blackwell Handbook of Social Psychology: Intraindividual Processes. Hoboken, NJ, USA: Blackwell Publishing; 2007. The psychophysiological perspective on the social mind; pp. 89–108. [CrossRef] [Google Scholar]

210. Dawson M. E., Schell A. M., Filion D. L. The electrodermal system. In: Cacioppo J. T., Tassinary L. G., Berntson G. B., editors. Handbook of Psychophysiology. Cambridge, UK: University Press; 2000. pp. 200–223. [Google Scholar]

211. Ravaja N. Contributions of psychophysiology to media research: review and recommendations. Media Psychology. 2004;6(2):193–235. doi: 10.1207/s1532785xmep0602_4. [CrossRef] [Google Scholar]

212. Lang P. J. The varieties of emotional experience: a meditation on James-Lange theory. Psychological Review. 1994;101(2):211–221. doi: 10.1037//0033-295x.101.2.211. [PubMed] [CrossRef] [Google Scholar]

213. Lang A. Involuntary attention and physiological arousal evoked by structural features and emotional content in TV commercials. Communication Research. 1990;17(3):275–299. doi: 10.1177/009365090017003001. [CrossRef] [Google Scholar]

214. Bradley M. M., Cuthbert B. N., Lang P. J. Picture media and emotion: effects of a sustained affective context. Psychophysiology. 1996;33(6):662–670. doi: 10.1111/j.1469-8986.1996.tb02362.x. [PubMed] [CrossRef] [Google Scholar]

215. Greenwald M. K., Cook E. W., Lang P. J. Affective judgment and psychophysiological response: dimensional covariation in the evaluation of pictorial stimuli. Journal of Psychophysiology. 1989;3(1):51–64. [Google Scholar]

216. Bolls P. D., Lang A., Potter R. F. The effects of message valence and listener arousal on attention, memory, and facial muscular responses to radio advertisements. Communication Research. 2001;28(5):627–651. doi: 10.1177/009365001028005003. [CrossRef] [Google Scholar]

217. Ray M. L., Batra R. Emotion and persuasion in advertising: what we do and don’t know about affect. In: Bagozzi R. P., Tybout A. M., editors. NA-Advances in Consumer Research. Vol. 10. Ann Abor, MI, USA: Association for Consumer Research; 1983. pp. 543–548. [Google Scholar]

218. Piwowarski M. Neuromarketing tools in studies on models of social issue advertising impact on recipients. Proceedings of the International Conference on Computational Methods in Experimental Economics; July 2017; Alicante, Spain. pp. 99–111. [CrossRef] [Google Scholar]

219. Kenning P., Linzmajer M. Consumer neuroscience: an overview of an emerging discipline with implications for consumer policy. Journal für Verbraucherschutz und Lebensmittelsicherheit. 2011;6(1):111–125. doi: 10.1007/s00003-010-0652-5. [CrossRef] [Google Scholar]

220. Elpers J. L. C. M. W., Wedel M., Pieters R. G. M. Why do consumers stop viewing television commercials? Two experiments on the influence of moment-to-moment entertainment and information value. Journal of Marketing Research. 2003;40(4):437–453. doi: 10.1509/jmkr.40.4.437.19393. [CrossRef] [Google Scholar]

221. Teixeira T. S., Stipp H. Optimizing the amount of entertainment in advertising. Journal of Advertising Research. 2013;53(3):286–296. doi: 10.2501/jar-53-3-286-296. [CrossRef] [Google Scholar]

222. Yang X., Smith R. E. Beyond attention effects: modeling the persuasive and emotional effects of advertising creativity. Marketing Science. 2009;28(5):935–949. doi: 10.1287/mksc.1080.0460. [CrossRef] [Google Scholar]

223. Glowa T. White Paper: Advertising Process Models. Calgary, Canada: North Country Research Inc.; 2002. [Google Scholar]

224. Borawska A. Selected Issues in Experimental Economics. Cham, Switzerland: Springer; 2016. Neuroscience techniques in economic experiments; pp. 125–133. [CrossRef] [Google Scholar]

225. Nermend K., Piwowarski M. Cognitive neuroscience techniques in supporting decision making and the analysis of social campaign. Proceedings of the International Conference on Accounting, Business, Economics and Politics (ICABEP-2018); February 2018; Erbil, Iraq. pp. 1–12. [Google Scholar]

226. Ioannides A. A., Liu L., Theofilou D., et al. Real time processing of affective and cognitive stimuli in the human brain extracted from MEG signals. Brain Topography. 2000;13(1):11–19. doi: 10.1023/A:1007878001388. [PubMed] [CrossRef] [Google Scholar]

227. Ambler T., Burne T. The impact of affect on memory of advertising. Journal of Advertising Research. 1999;39:25–34. [Google Scholar]

228. Young C. Brain waves, picture sorts, and branding moments. Journal of Advertising Research. 2002;42(4):42–53. doi: 10.2501/jar-42-4-42-53. [CrossRef] [Google Scholar]

229. Astolfi L., De Vico Fallani F., Cincotti F., et al. Neural basis for brain responses to TV commercials: a high-resolution EEG study. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008;16(6):522–531. doi: 10.1109/tnsre.2008.2009784. [PubMed] [CrossRef] [Google Scholar]

230. Astolfi L., Vecchiato G., De Vico Fallani F., et al. The track of brain activity during the observation of tv commercials with the high-resolution eeg technology. Computational Intelligence and Neuroscience. 2009;2009:7. doi: 10.1155/2009/652078.652078 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Ohme R., Reykowska D., Wiener D., Choromanska A. Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. Journal of Neuroscience, Psychology, and Economics. 2009;2(1):21–31. doi: 10.1037/a0015462. [CrossRef] [Google Scholar]

232. Ohme R., Reykowska D., Wiener D., Choromanska A. Application of frontal EEG asymmetry to advertising research. Journal of Economic Psychology. 2010;31(5):785–793. doi: 10.1016/j.joep.2010.03.008. [CrossRef] [Google Scholar]

233. Vecchiato G., Astolfi L., De Vico Fallani F., et al. On the use of EEG or MEG brain imaging tools in neuromarketing research. Computational Intelligence and Neuroscience. 2011;2011:12. doi: 10.1155/2011/643489.643489 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. Cherubino P., Trettel A., Cartocci G., et al. Selected Issues In Experimental Economics. Cham, Switzerland: Springer; 2016. Neuroelectrical indexes for the study of the efficacy of TV advertising stimuli; pp. 355–371. [CrossRef] [Google Scholar]

235. Dimpfel W. Neuromarketing: neurocode-tracking in combination with eye-tracking for quantitative objective assessment of TV commercials. Journal of Behavioral and Brain Science. 2015;5(4):137–147. doi: 10.4236/jbbs.2015.54014. [CrossRef] [Google Scholar]

236. Cartocci G., Cherubino P., Rossi D., et al. Gender and age related effects while watching TV advertisements: an EEG study. Computational Intelligence and Neuroscience. 2016;2016:10. doi: 10.1155/2016/3795325.3795325 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Vecchiato G., Maglione A. G., Cherubino P., et al. Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercials. Computational and Mathematical Methods in Medicine. 2014;2014:12. doi: 10.1155/2014/912981.912981 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

238. Barry P. The Advertising Concept Book: Think Now, Design Later (Third) London, UK: Thames & Hudson; 2016. [Google Scholar]

239. Rogers R. W., Prentice-Dunn S., Gochman D. S. Handbook of Health Behavior Research 1: Personal and Social Determinants. New York, NY, USA: Plenum Press; 1997. [Google Scholar]

240. Ana Martinez-Levy D., Cherubino P., Cartocci G., et al. Gender differences evaluation in charity campaigns perception by measuring neurophysiological signals and behavioural data. International Journal of Bioelectromagnetism. 2017;19(1):25–35. [Google Scholar]

241. Biener L., Harris J. E., Hamilton W. Impact of the Massachusetts tobacco control programme: population based trend analysis. BMJ. 2000;321(7257):351–354. doi: 10.1136/bmj.321.7257.351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Emery S., Wakefield M. A., Terry-McElrath Y., et al. Televised state-sponsored antitobacco advertising and youth smoking beliefs and behavior in the United States, 1999-2000. Archives of Pediatrics and Adolescent Medicine. 2005;159(7):639–645. doi: 10.1001/archpedi.159.7.639. [PubMed] [CrossRef] [Google Scholar]

243. Mela C. F., Gupta S., Lehmann D. R. The long-term impact of promotion and advertising on consumer brand choice. Journal of Marketing Research. 1997;34(2):248–261. doi: 10.1177/002224379703400205. [CrossRef] [Google Scholar]

244. Baldo D., Parikh H., Piu Y., Müller K.-M. Brain waves predict success of new fashion products: a practical application for the footwear retailing industry. Journal of Creating Value. 2015;1(1):61–71. doi: 10.1177/2394964315569625. [CrossRef] [Google Scholar]

245. Christensen C. M., Cook S., Hall T. Marketing malpractice. Harvard Business Review. 2005;83(12):74–83. [PubMed] [Google Scholar]

246. Bloch P. H. Seeking the ideal form: product design and consumer response. Journal of Marketing. 1995;59(3):16–29. doi: 10.2307/1252116. [CrossRef] [Google Scholar]

247. Erk S., Spitzer M., Wunderlich A. P., Galley L., Walter H. Cultural objects modulate reward circuitry. Neuroreport. 2002;13(18):2499–2503. doi: 10.1097/00001756-200212200-00024. [PubMed] [CrossRef] [Google Scholar]

248. Bechara A., Damasio H., Damasio A. R. Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex. 2000;10(3):295–307. doi: 10.1093/cercor/10.3.295. [PubMed] [CrossRef] [Google Scholar]

249. O’Doherty J. P. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Current Opinion in Neurobiology. 2004;14(6):769–776. doi: 10.1016/j.conb.2004.10.016. [PubMed] [CrossRef] [Google Scholar]

250. Cholewa-Wójcik A. S., Ś.nd J. A study and assessment of selected elements of the visual aspects of collectible chocolate packaging with the use of the eye—tracking method. Indian Journal of Marketing. 2015;45(7):7–18. doi: 10.17010/ijom/2015/v45/i7/79922. [CrossRef] [Google Scholar]

251. Kobayashi M. L., Benassi M. d. T. Impact of packaging characteristics on consumer purchase intention: instant coffee in refill packs and glass jars. Journal of Sensory Studies. 2015;30(3):169–180. doi: 10.1111/joss.12142. [CrossRef] [Google Scholar]

252. Delgado C., Gómez-Rico A., Guinard J.-X. Evaluating bottles and labels versus tasting the oils blind: effects of packaging and labeling on consumer preferences, purchase intentions and expectations for extra virgin olive oil. Food Research International. 2013;54(2):2112–2121. doi: 10.1016/j.foodres.2013.10.021. [CrossRef] [Google Scholar]

253. Tangeland L., Schulte K. Ø., Boks C. Tactile qualities of materials in consumer product packaging. Proceedings of the NordDesign 2008 Conference: DS 50; August 2008; Tallinn, Estonia. [Google Scholar]

254. Underwood R. L., Klein N. M. Packaging as brand communication: effects of product pictures on consumer responses to the package and brand. Journal of Marketing Theory and Practice. 2002;10(4):58–68. doi: 10.1080/10696679.2002.11501926. [CrossRef] [Google Scholar]

255. Piqueras-Fiszman B., Alcaide J., Roura E., Spence C. Is it the plate or is it the food? Assessing the influence of the color (black or white) and shape of the plate on the perception of the food placed on it. Food Quality and Preference. 2012;24(1):205–208. doi: 10.1016/j.foodqual.2011.08.011. [CrossRef] [Google Scholar]

256. Spence C., Piqueras-Fiszman B. The multisensory packaging of beverages. In: Kontominas M. G., Hauppauge N. Y., editors. Food Packaging: Procedures, Management and Trends. Hauppauge, NY, USA: Nova Science Publishers; 2012. pp. 187–233. [Google Scholar]

257. Schifferstein H. N. J., Howell B. F. Using color-odor correspondences for fragrance packaging design. Food Quality and Preference. 2015;46:17–25. doi: 10.1016/j.foodqual.2015.06.012. [CrossRef] [Google Scholar]

258. Löfgren M., Witell L., Gustafsson A. Customer satisfaction in the first and second moments of truth. Journal of Product and Brand Management. 2008;17(7):463–474. doi: 10.1108/10610420810916362. [CrossRef] [Google Scholar]

259. Gómez M., Martín-Consuegra D., Molina A. The importance of packaging in purchase and usage behaviour. International Journal of Consumer Studies. 2015;39(3):203–211. doi: 10.1111/ijcs.12168. [CrossRef] [Google Scholar]

260. Modica E., Cartocci G., Rossi D., et al. Neurophysiological responses to different product experiences. Computational Intelligence and Neuroscience. 2018;2018:10. doi: 10.1155/2018/9616301.9616301 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

261. Kumar S. Neuromarketing: the new science of advertising. Universal Journal of Management. 2015;3(12):524–531. doi: 10.13189/ujm.2015.031208. [CrossRef] [Google Scholar]

262. Stoll M., Baecke S., Kenning P. What they see is what they get? An fMRI-study on neural correlates of attractive packaging. Journal of Consumer Behaviour. 2008;7(4-5):342–359. doi: 10.1002/cb.256. [CrossRef] [Google Scholar]

263. Gang D.-J., Lin W., Qi Z., Yan L.-L. Neuromarketing: marketing through science. Proceedings of the 2012 International Joint Conference on Service Sciences (IJCSS); May 2012; Shanghai, China. pp. 285–289. [CrossRef] [Google Scholar]

264. Reimann M., Zaichkowsky J., Neuhaus C., Bender T., Weber B. Aesthetic package design: a behavioral, neural, and psychological investigation. Journal of Consumer Psychology. 2010;20(4):431–441. doi: 10.1016/j.jcps.2010.06.009. [CrossRef] [Google Scholar]

265. Dapkevicius A., Melnikas B. Influence of price and quality to customer satisfaction: neuromarketing approach. Mokslas-Lietuvos Ateitis. 2009;1(3):p. 17. [Google Scholar]

266. Fugate D. L. Marketing services more effectively with neuromarketing research: a look into the future. Journal of Services Marketing. 2008;22(2):170–173. doi: 10.1108/08876040810862903. [CrossRef] [Google Scholar]

267. Rao V. R. Pricing research in marketing: the state of the art. The Journal of Business. 1984;57:S39–S60. doi: 10.1086/296235. [CrossRef] [Google Scholar]

268. Pasternack B. A. Optimal pricing and return policies for perishable commodities. Marketing Science. 2008;27(1):133–140. doi: 10.1287/mksc.1070.0336. [CrossRef] [Google Scholar]

269. Gabor A., Granger C. The pricing of new products. Management Decision. 1979;17(8):576–589. doi: 10.1108/eb001213. [CrossRef] [Google Scholar]

270. Lichtenstein D. R., Ridgway N. M., Netemeyer R. G. Price perceptions and consumer shopping behavior: a field study. Journal of Marketing Research. 1993;30(2):234–245. doi: 10.1177/002224379303000208. [CrossRef] [Google Scholar]

271. Bijmolt T. H. A., van Heerde H. J., Pieters R. G. M. New empirical generalizations on the determinants of price elasticity. Journal of Marketing Research. 2005;42(2):141–156. doi: 10.1509/jmkr.42.2.141.62296. [CrossRef] [Google Scholar]

272. Bizer G. Y., Schindler R. M. Direct evidence of ending-digit drop-off in price information processing. Psychology and Marketing. 2005;22(10):771–783. doi: 10.1002/mar.20084. [CrossRef] [Google Scholar]

273. Amaldoss W., Jain S. Pricing of conspicuous goods: a competitive analysis of social effects. Journal of Marketing Research. 2005;42(1):30–42. doi: 10.1509/jmkr.42.1.30.56883. [CrossRef] [Google Scholar]

274. Völckner F. The dual role of price: decomposing consumers’ reactions to price. Journal of the Academy of Marketing Science. 2008;36(3):359–377. doi: 10.1007/s11747-007-0076-7. [CrossRef] [Google Scholar]

275. Vanhuele M., Drèze X. Measuring the price knowledge shoppers bring to the store. Journal of Marketing. 2002;66(4):72–85. doi: 10.1509/jmkg.66.4.72.18516. [CrossRef] [Google Scholar]

276. Evanschitzky H., Kenning P., Vogel V. Consumer price knowledge in the German retail market. Journal of Product and Brand Management. 2004;13(6):390–405. doi: 10.1108/10610420410560299. [CrossRef] [Google Scholar]

277. Breiter H. C., Aharon I., Kahneman D., Dale A., Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron. 2001;30(2):619–639. doi: 10.1016/s0896-6273(01)00303-8. [PubMed] [CrossRef] [Google Scholar]

278. Knutson B., Peterson R. Neurally reconstructing expected utility. Games and Economic Behavior. 2005;52(2):305–315. doi: 10.1016/j.geb.2005.01.002. [CrossRef] [Google Scholar]

279. Simon H., Dolan R. J. Price customization: the higher art of power pricing includes strategies based on customer valuation to boost profits. Marketing management. 1998;7(3):11–18. [Google Scholar]

280. Becker G. M., DeGroot M. H., Marschak J. Measuring utility by a single-response sequential method. Behavioral Science. 1964;9(3):226–232. doi: 10.1002/bs.3830090304. [PubMed] [CrossRef] [Google Scholar]

281. Kahneman D., Snell J. Predicting a changing taste: do people know what they will like? Journal of Behavioral Decision Making. 1992;5(3):187–200. doi: 10.1002/bdm.3960050304. [CrossRef] [Google Scholar]

282. Kahneman D., Wakker P. P., Sarin R. Back to bentham? Explorations of experienced utility. The Quarterly Journal of Economics. 1997;112(2):375–406. doi: 10.1162/003355397555235. [CrossRef] [Google Scholar]

283. Rangel A., Camerer C., Montague P. R. A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience. 2008;9(7):545–556. doi: 10.1038/nrn2357. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

284. Baker W. E. Does brand name imprinting in memory increase brand information retention? Psychology and Marketing. 2003;20(12):1119–1135. doi: 10.1002/mar.10111. [CrossRef] [Google Scholar]

285. Bargh J. A. Losing consciousness: automatic influences on consumer judgment, behavior, and motivation. Journal of Consumer Research. 2002;29(2):280–285. doi: 10.1086/341577. [CrossRef] [Google Scholar]

286. Saegert J. Why marketing should quit giving subliminal advertising the benefit of the doubt. Psychology and Marketing. 1987;4(2):107–120. doi: 10.1002/mar.4220040204. [CrossRef] [Google Scholar]

287. Shapiro S. When an ad’S influence is beyond our conscious control: perceptual and conceptual fluency effects caused by incidental ad exposure. Journal of Consumer Research. 1999;26(1):16–36. doi: 10.1086/209548. [CrossRef] [Google Scholar]

288. Synodinos N. E. Review and appraisal of subliminal perception within the context of signal detection theory. Psychology and Marketing. 1988;5(4):317–336. doi: 10.1002/mar.4220050404. [CrossRef] [Google Scholar]

289. Theus K. T. Subliminal advertising and the psychology of processing unconscious stimuli: a review of research. Psychology and Marketing. 1994;11(3):271–290. doi: 10.1002/mar.4220110306. [CrossRef] [Google Scholar]

290. Zajonc R. B., Markus H. Must all affect be mediated by cognition? Journal of Consumer Research. 1985;12(3):363–364. doi: 10.1086/208523. [CrossRef] [Google Scholar]

291. Zaltman G. Consumer researchers: take a hike! Journal of Consumer Research. 2000;26(4):423–428. doi: 10.1086/209573. [CrossRef] [Google Scholar]

292. Brasel S. A., Gips J. Red Bull “Gives You Wings” for better or worse: a double-edged impact of brand exposure on consumer performance. Journal of Consumer Psychology. 2011;21(1):57–64. doi: 10.1016/j.jcps.2010.09.008. [CrossRef] [Google Scholar]

293. Chartrand T. L., Huber J., Shiv B., Tanner R. J. Nonconscious goals and consumer choice. Journal of Consumer Research. 2008;35(2):189–201. doi: 10.1086/588685. [CrossRef] [Google Scholar]

294. Dimofte C. V., Yalch R. F. The mere association effect and brand evaluations. Journal of Consumer Psychology. 2011;21(1):24–37. doi: 10.1016/j.jcps.2010.09.005. [CrossRef] [Google Scholar]

295. Friese M., Wänke M., Plessner H. Implicit consumer preferences and their influence on product choice. Psychology and Marketing. 2006;23(9):727–740. doi: 10.1002/mar.20126. [CrossRef] [Google Scholar]

296. Janiszewski C. Preattentive mere exposure effects. Journal of Consumer Research. 1993;20(3):376–392. doi: 10.1086/209356. [CrossRef] [Google Scholar]

297. Moore T. E. The case against subliminal manipulation. Psychology and Marketing. 1988;5(4):297–316. doi: 10.1002/mar.4220050403. [CrossRef] [Google Scholar]

298. Nevid J. S. Introduction to the special issue: implicit measures of consumer response-the search for the Holy Grail of marketing research. Psychology and Marketing. 2010;27(10):913–920. doi: 10.1002/mar.20365. [CrossRef] [Google Scholar]

299. Pratkanis A. R., Greenwald A. G. Recent perspectives on unconscious processing: still no marketing applications. Psychology and Marketing. 1988;5(4):337–353. doi: 10.1002/mar.4220050405. [CrossRef] [Google Scholar]

300. Deppe M., Schwindt W., Kugel H., Plassmann H., Kenning P. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. Journal of Neuroimaging. 2005;15(2):171–182. doi: 10.1111/j.1552-6569.2005.tb00303.x. [PubMed] [CrossRef] [Google Scholar]

301. Kenning P., Plaßmann H., Deppe M., Kugel H., Schwindt W. Neuroökonomischer Forschungsbericht, no. 1. Münster, Germany: Inst. für Handelsmanagement und Netzwerk Marketing; 2002. Die Entdeckung der kortikalen Entlastung. [Google Scholar]

302. Shocker A. D., Ben-Akiva M., Boccara B., Nedungadi P. Consideration set influences on consumer decision-making and choice: issues, models, and suggestions. Marketing Letters. 1991;2(3):181–197. doi: 10.1007/bf00554125. [CrossRef] [Google Scholar]

303. Koenigs M., Tranel D. Prefrontal cortex damage abolishes brand-cued changes in cola preference. Social Cognitive and Affective Neuroscience. 2007;3(1):1–6. doi: 10.1093/scan/nsm032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

304. Plassmann H., Kenning P., Schwindt W., Kugel H., Deppe M. The role of the medial prefrontal cortex in risk modulated processing of brand information. Proceedings of the Poster Presented on the OHBM-Annual Meeting; 2005; Toronto, Canada. [Google Scholar]

305. Stuart H., Muzellec L. Corporate makeovers: can a hyena be rebranded? Journal of Brand Management. 2004;11(6):472–482. doi: 10.1057/palgrave.bm.2540193. [CrossRef] [Google Scholar]

306. Sergius Koku P. Corporate name change signaling in the services industry. Journal of Services Marketing. 1997;11(6):392–408. doi: 10.1108/08876049710187491. [CrossRef] [Google Scholar]

307. Kapferer J.-N. The new strategic brand management. Creating and Sustaining Brand Equity Long Term. 2004;3 [Google Scholar]

308. Alberto Mattiacci S. R. Re-branding. L’avventura Tim. Bologna, Italy: Fausto Lupetti Editore; 2017. [Google Scholar]

309. Spiliopoulou M. Web usage mining for web site evaluation. Communications of the ACM. 2000;43(8):127–134. doi: 10.1145/345124.345167. [CrossRef] [Google Scholar]

310. Román P. E., L’Huillier G., Velásquez J. D. Advanced Techniques In Web Intelligence-I. Cham, Switzerland: Springer; 2010. Web usage mining; pp. 143–165. [Google Scholar]

311. Slanzi G., Balazs J. A., Velásquez J. D. Combining eye tracking, pupil dilation and EEG analysis for predicting web users click intention. Information Fusion. 2017;35:51–57. doi: 10.1016/j.inffus.2016.09.003. [CrossRef] [Google Scholar]

312. Velasquez J. D., Weber R., Yasuda H., Aoki T. Acquisition and maintenance of knowledge for online navigation suggestions. IEICE Transactions on Information and Systems. 2005;E88-D(5):993–1003. doi: 10.1093/ietisy/e88-d.5.993. [CrossRef] [Google Scholar]

313. Facca F. M., Lanzi P. L. Mining interesting knowledge from weblogs: a survey. Data and Knowledge Engineering. 2005;53(3):225–241. doi: 10.1016/j.datak.2004.08.001. [CrossRef] [Google Scholar]

314. Velásquez J. D., Dujovne L. E., L’Huillier G. Extracting significant website key objects: a semantic web mining approach. Engineering Applications of Artificial Intelligence. 2011;24(8):1532–1541. doi: 10.1016/j.engappai.2011.02.001. [CrossRef] [Google Scholar]

315. Shinde S. K., Kulkarni U. V. A new approach for on line recommender system in web usage mining. Proceedings of the International Conference on Advanced Computer Theory and Engineering, ICACTE’08; December 2008; Phuket, Thailand. pp. 973–977. [CrossRef] [Google Scholar]

316. Chandon P., Hutchinson J., Bradlow E., Young S. H. Measuring the value of point-of-purchase marketing with commercial eye-tracking data. SSRN Electronic Journal. 2006;22 doi: 10.2139/ssrn.1032162. [CrossRef] [Google Scholar]

317. Wedel M., Pieters R. Review of Marketing Research. Bradford, UK: Emerald Group Publishing Limited; 2008. A review of eye-tracking research in marketing; pp. 123–147. [Google Scholar]

318. Krajbich I., Armel C., Rangel A. Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience. 2010;13(10):1292–1298. doi: 10.1038/nn.2635. [PubMed] [CrossRef] [Google Scholar]

319. Djamasbi S., Siegel M., Tullis T. Generation Y, web design, and eye tracking. International Journal of Human-Computer Studies. 2010;68(5):307–323. doi: 10.1016/j.ijhcs.2009.12.006. [CrossRef] [Google Scholar]

320. Lee H., Seo S. A comparison and analysis of usability methods for web evaluation: the relationship between typical usability test and bio-signals characteristics (EEG, ECG). Proceedings of the Design Research Society; July 2010; Montreal, Canada. pp. 893–904. [Google Scholar]

321. Reutskaja E., Nagel R., Camerer C. F., Rangel A. Search dynamics in consumer choice under time pressure: an eye-tracking study. American Economic Review. 2011;101(2):900–926. doi: 10.1257/aer.101.2.900. [CrossRef] [Google Scholar]

322. Khushaba R. N., Greenacre L., Kodagoda S., Louviere J., Burke S., Dissanayake G. Choice modeling and the brain: a study on the Electroencephalogram (EEG) of preferences. Expert Systems with Applications. 2012;39(16):12378–12388. doi: 10.1016/j.eswa.2012.04.084. [CrossRef] [Google Scholar]

323. Khushaba R. N., Wise C., Kodagoda S., Louviere J., Kahn B. E., Townsend C. Consumer neuroscience: assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications. 2013;40(9):3803–3812. doi: 10.1016/j.eswa.2012.12.095. [CrossRef] [Google Scholar]

324. Park J., Han S. H., Kim H. K., Oh S., Moon H. Modeling user experience: a case study on a mobile device. International Journal of Industrial Ergonomics. 2013;43(2):187–196. doi: 10.1016/j.ergon.2013.01.005. [CrossRef] [Google Scholar]

325. Anuar J., Musa M., Khalid K. Smartphone’s application adoption benefits using mobile hotel reservation system (MHRS) among 3 to 5-star city hotels in Malaysia. Procedia-Social and Behavioral Sciences. 2014;130:552–557. doi: 10.1016/j.sbspro.2014.04.064. [CrossRef] [Google Scholar]

326. de la Vega R., Roset R., Castarlenas E., Sánchez-Rodríguez E., Solé E., Miró J. Development and testing of painometer: a smartphone app to assess pain intensity. The Journal of Pain. 2014;15(10):1001–1007. doi: 10.1016/j.jpain.2014.04.009. [PubMed] [CrossRef] [Google Scholar]

327. Chorianopoulos K., Geerts D. Introduction to User Experience Design for TV Apps. Entertainment Computing. 2011;2(3):149–150. doi: 10.1016/j.entcom.2011.03.009. [CrossRef] [Google Scholar]

328. Haverila M. Mobile phone feature preferences, customer satisfaction and repurchase intent among male users. Australasian Marketing Journal (AMJ) 2011;19(4):238–246. doi: 10.1016/j.ausmj.2011.05.009. [CrossRef] [Google Scholar]

329. Engl S., Nacke L. E. Contextual influences on mobile player experience—a game user experience model. Entertainment Computing. 2013;4(1):83–91. doi: 10.1016/j.entcom.2012.06.001. [CrossRef] [Google Scholar]

330. Qu Q.-X., Zhang L., Chao W.-Y., Duffy V. Advances In Applied Digital Human Modeling and Simulation. Cham, Switzerland: Springer; 2017. User experience design based on eye-tracking technology: a case study on smartphone APPs; pp. 303–315. [CrossRef] [Google Scholar]

331. Law E. L.-C., Van Schaik P. Modelling user experience - an agenda for research and practice. Interacting with Computers. 2010;22(5):313–322. doi: 10.1016/j.intcom.2010.04.006. [CrossRef] [Google Scholar]

332. Adhami M. Using neuromarketing to discover how we really feel about apps. International Journal of Mobile Marketing. 2013;8(1):95–103. [Google Scholar]

333. Bounie D., Valérie M., Quinn M. Do you see what I see? Ad viewability and the economics of online advertising. SSRN Electronic Journal. 2017 doi: 10.2139/ssrn.2854265. [CrossRef] [Google Scholar]

334. IAB Europe. Viewable Impressions an IAB Europe White Paper. Brussels, Belgium: IAB; 2015. [Google Scholar]

335. Benton J. Like it or Not, Native Advertising is Squarely Inside the Big News Tent. Cambridge, MA, USA: Nieman Lab; 2014. [Google Scholar]

336. Benway J. P. Banner blindness: the irony of attention grabbing on the World Wide Web. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 1998;42(5):463–467. doi: 10.1177/154193129804200504. [CrossRef] [Google Scholar]

337. Cho C.-H., University of Texas at Austin Why do people avoid advertising on the internet? Journal of Advertising. 2004;33(4):89–97. doi: 10.1080/00913367.2004.10639175. [CrossRef] [Google Scholar]

338. Wojdynski B. W., Evans N. J. Going native: effects of disclosure position and language on the recognition and evaluation of online native advertising. Journal of Advertising. 2016;45(2):157–168. doi: 10.1080/00913367.2015.1115380. [CrossRef] [Google Scholar]

339. Sharethrough, “A neuroscience Perspective,” March 2015. https://www.sharethrough.com/downloads/Sharethrough_Neuroscience_Report.pdf.

340. Ramsøy T. Z. Introduction to Neuromarketing & Consumer Neuroscience. Taastrup, Denmark: Neurons Inc.; 2015. [Google Scholar]

341. Mobile Marketing Association Global (MMAG) New York, USA: Mobile Marketing Association Global (MMAG); 2019. Mobile marketing association reveals brands need a “One Second Strategy” https://www.mmaglobal.com/news/mobile-marketing-association-reveal-brands-need-one-second-strategy. [Google Scholar]

342. Solomon M. R., Marshall G. W., Stuart E. W. Marketing Očima Světových Marketing Manažerů. Brno, Czechia: Computer Press; 2006. [Google Scholar]

343. Horská E., Berčík J. The influence of light on consumer behavior at the food market. Journal of Food Products Marketing. 2014;20(4):429–440. doi: 10.1080/10454446.2013.838531. [CrossRef] [Google Scholar]

344. Varley R. Retail Product Management: Buying and Merchandising. London, UK: Routledge; 2014. [Google Scholar]

345. Kang E., Boger C. A., Back K.-J., Madera J. Houston, TX, USA: University of Houston; 2011. The impact of sensory environments on Spagoers’ emotion and behavioral intention. Unpublished thesis. [Google Scholar]

346. Tuan Pham M. The logic of feeling. Journal of Consumer Psychology. 2004;14(4):360–369. doi: 10.1207/s15327663jcp1404_5. [CrossRef] [Google Scholar]

347. Hallbauer S. Retail Marketing and New Retail Idea. London, UK: Marks & Spencer; 2008. [Google Scholar]

348. Nagyová Ľ., Berčík J., Horská E. The efficiency, energy intensity and visual impact of the accent lighting in the retail grocery stores. Potravinarstvo. 2014;8(1):296–305. doi: 10.5219/398. [CrossRef] [Google Scholar]

349. Areni C. S., Kim D. The influence of in-store lighting on consumers’ examination of merchandise in a wine store. International Journal of Research in Marketing. 1994;11(2):117–125. doi: 10.1016/0167-8116(94)90023-x. [CrossRef] [Google Scholar]

350. Georges M. B. P. M., Bayle-Tourtoulou A.-S. Neuromarketing in Action: How to Talk and Sell to the Brain. London, UK: Kogan Page London Sterling; 2014. [Google Scholar]

351. Berčík J., Horská E., Wang W. Y., Chen Y.-C. How can food retailing benefit from neuromarketing research: a case of various parameters of store illumination and consumer response. Proceedings of the 143rd Joint EAAE/AAEA Seminar; March 2015; Naples, Italy. [Google Scholar]

352. POPAI. The New Shopper Journey. Washington, DC, USA: POPAI; 2012. [Google Scholar]

353. Gutierrez-Rubi A. Neuropolitica, February 2012.

354. Braidot N. Cómo Funciona Tu Cerebro. Bogotá, Colombia: Planeta; 2014. [Google Scholar]

355. Kanai R., Feilden T., Firth C., Rees G. Political orientations are correlated with brain structure in young adults. Current Biology. 2011;21(8):677–680. doi: 10.1016/j.cub.2011.03.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

356. Westen D. The Political Brain: The Role of Emotion in Deciding the Fate of the Nation. New York, NY, USA: PublicAffairs; 2008. [Google Scholar]

357. Braidot N. Rotterdam, Netherlands: Recuper; 2011. ¿ Qué Ocurre en el cerebro del electorado, ¿ qué ocurre en el cerebro de los candidatos. http://www.braidot.com/upload/579_Neurociencias_y_Democracia.pdf. [Google Scholar]

358. Adorno T. W., Frenkel-Brunswik E., Levinson D. J., Sanford R. N. The Authoritarian Personality. Manhattan, NY, USA: Harper; 1950. [Google Scholar]

359. Iacoboni M. This is Your Brain on Politics. New York, NY, USA: New York Times; 2007. [Google Scholar]

360. Westen D. The Political Brain: How We Make up Our Minds without Using Our Heads. New York, NY, USA: PublicAffairs; 2007. [Google Scholar]

361. Owen L. Swaying the Swingers: How Neuroscience Influences Voting Behaviour. Oxford, UK: Oxford University Press; 2008. [Google Scholar]

362. Vecchiato G., Astolfi L., Tabarrini A., et al. EEG analysis of the brain activity during the observation of commercial, political, or public service announcements. Computational Intelligence and Neuroscience. 2010;2010:7. doi: 10.1155/2010/985867.985867 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

363. Shepherd G. M. Neurogastronomy: How the Brain Creates Flavor and Why it Matters. New York, NY, USA: Columbia University Press; 2011. [Google Scholar]

364. Shepherd G. M. Neuroenology: How the Brain Creates the Taste of Wine. New York, NY, USA: Columbia University Press; 2016. [Google Scholar]

365. Drewnowski A. Taste preferences and food intake. Annual Review of Nutrition. 1997;17(1):237–253. doi: 10.1146/annurev.nutr.17.1.237. [PubMed] [CrossRef] [Google Scholar]

366. Donaldson L. F., Bennett L., Baic S., Melichar J. K. Taste and weight: is there a link? The American Journal of Clinical Nutrition. 2009;90(3):800S–803S. doi: 10.3945/ajcn.2009.27462q. [PubMed] [CrossRef] [Google Scholar]

367. Ileri-Gurel E., Pehlivanoglu B., Dogan M. Effect of acute stress on taste perception: in relation with baseline anxiety level and body weight. Chemical Senses. 2012;38(1):27–34. doi: 10.1093/chemse/bjs075. [PubMed] [CrossRef] [Google Scholar]

368. Grunberg N. E. The effects of nicotine and cigarette smoking on food consumption and taste preferences. Addictive Behaviors. 1982;7(4):317–331. doi: 10.1016/0306-4603(82)90001-6. [PubMed] [CrossRef] [Google Scholar]

369. Vennemann M. M., Hummel T., Berger K. The association between smoking and smell and taste impairment in the general population. Journal of Neurology. 2008;255(8):1121–1126. doi: 10.1007/s00415-008-0807-9. [PubMed] [CrossRef] [Google Scholar]

370. Pepino M. Y., Mennella J. A. Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcoholism: Clinical and Experimental Research. 2007;31(11):1891–1899. doi: 10.1111/j.1530-0277.2007.00519.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

371. Bartoshuk L. M., Rifkin B., Marks L. E., Bars P. Taste and aging. Journal of Gerontology. 1986;41(1):51–57. doi: 10.1093/geronj/41.1.51. [PubMed] [CrossRef] [Google Scholar]

372. Duffy V. B. Variation in oral sensation: implications for diet and health. Current Opinion in Gastroenterology. 2007;23(2):171–177. doi: 10.1097/mog.0b013e3280147d50. [PubMed] [CrossRef] [Google Scholar]

373. Stasi A., Songa G., Mauri M., et al. Neuromarketing empirical approaches and food choice: a systematic review. Food Research International. 2018;108:650–664. doi: 10.1016/j.foodres.2017.11.049. [PubMed] [CrossRef] [Google Scholar]

374. Grabenhorst F., Rolls E. T., Bilderbeck A. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cerebral Cortex. 2007;18(7):1549–1559. doi: 10.1093/cercor/bhm185. [PubMed] [CrossRef] [Google Scholar]

375. Kringelbach M. L., de Araujo I. E. T., Rolls E. T. Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage. 2004;21(2):781–788. doi: 10.1016/j.neuroimage.2003.09.063. [PubMed] [CrossRef] [Google Scholar]

376. De Araujo I. E. T., Rolls E. T., Kringelbach M. L., McGlone F., Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. European Journal of Neuroscience. 2003;18(7):2059–2068. doi: 10.1046/j.1460-9568.2003.02915.x. [PubMed] [CrossRef] [Google Scholar]

377. Ohla K., Busch N. A., Lundström J. N. Time for taste—a review of the early cerebral processing of gustatory perception. Chemosensory Perception. 2012;5(1):87–99. doi: 10.1007/s12078-011-9106-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

378. Santayana G. The Sense of Beauty Being the Outlines of Æthetic Theory. New York, NY, USA: Dover Publications; 1896. [Google Scholar]

379. Van der Laan L. N., De Ridder D. T. D., Viergever M. A., Smeets P. A. M. Appearance matters: neural correlates of food choice and packaging aesthetics. PLoS One. 2012;7(7):p. e41738. doi: 10.1371/journal.pone.0041738. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

380. Kirk U., Skov M., Christensen M. S., Nygaard N. Brain correlates of aesthetic expertise: a parametric fMRI study. Brain and Cognition. 2009;69(2):306–315. doi: 10.1016/j.bandc.2008.08.004. [PubMed] [CrossRef] [Google Scholar]

381. Vartanian O., Navarrete G., Chatterjee A., et al. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proceedings of the National Academy of Sciences. 2013;110(2):10446–10453. doi: 10.1073/pnas.1301227110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

382. Balling J. D., Falk J. H. Development of visual preference for natural environments. Environment and Behavior. 1982;14(1):5–28. doi: 10.1177/0013916582141001. [CrossRef] [Google Scholar]

383. Kaplan S. Aesthetics, affect, and cognition. Environment and Behavior. 1987;19(1):3–32. doi: 10.1177/0013916587191001. [CrossRef] [Google Scholar]

384. Kampe K. K. W., Frith C. D., Dolan R. J., Frith U. Reward value of attractiveness and gaze. Nature. 2001;413(6856):p. 589. doi: 10.1038/35098149. [PubMed] [CrossRef] [Google Scholar]

385. Leder H., Tinio P. P. L., Fuchs I. M., Bohrn I. When attractiveness demands longer looks: the effects of situation and gender. Quarterly Journal of Experimental Psychology. 2010;63(9):1858–1871. doi: 10.1080/17470211003605142. [PubMed] [CrossRef] [Google Scholar]

386. Mende-Siedlecki P., Said C. P., Todorov A. The social evaluation of faces: a meta-analysis of functional neuroimaging studies. Social Cognitive and Affective Neuroscience. 2012;8(3):285–299. doi: 10.1093/scan/nsr090. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

387. Pearce M. T., Zaidel D. W., Vartanian O., et al. Neuroaesthetics. Perspectives on Psychological Science. 2016;11(2):265–279. doi: 10.1177/1745691615621274. [PubMed] [CrossRef] [Google Scholar]

388. Croft J. The challenges of interdisciplinary epistemology in neuroaesthetics. Mind, Brain, and Education. 2011;5(1):5–11. doi: 10.1111/j.1751-228x.2011.01103.x. [CrossRef] [Google Scholar]

389. Chatterjee A., Vartanian O. Neuroaesthetics. Trends in Cognitive Sciences. 2014;18(7):370–375. doi: 10.1016/j.tics.2014.03.003. [PubMed] [CrossRef] [Google Scholar]

390. Zeki S. Art and the brain. Journal of Consciousness Studies. 1999;6(6-7):76–96. [Google Scholar]

391. Cinzia D. D., Vittorio G. Neuroaesthetics: a review. Current Opinion in Neurobiology. 2009;19(6):682–687. doi: 10.1016/j.conb.2009.09.001. [PubMed] [CrossRef] [Google Scholar]

392. Skov M., Vartanian O., Martindale C., Berleant A. Neuroaesthetics. Abingdon, UK: Routledge; 2018. [Google Scholar]

393. Cela-Conde C. J., Ayala F. J., Munar E., et al. Sex-related similarities and differences in the neural correlates of beauty. Proceedings of the National Academy of Sciences. 2009;106(10):3847–3852. doi: 10.1073/pnas.0900304106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

394. Lengger P. G., Fischmeister F. P. S., Leder H., Bauer H. Functional neuroanatomy of the perception of modern art: a DC-EEG study on the influence of stylistic information on aesthetic experience. Brain Research. 2007;1158:93–102. doi: 10.1016/j.brainres.2007.05.001. [PubMed] [CrossRef] [Google Scholar]

395. Umilta M. A., Berchio C., Sestito M., Freedberg D., Gallese V. Abstract art and cortical motor activation: an EEG study. Frontiers in Human Neuroscience. 2012;6:p. 311. doi: 10.3389/fnhum.2012.00311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

396. Kawabata H., Zeki S. Neural correlates of beauty. Journal of Neurophysiology. 2004;91(4):1699–1705. doi: 10.1152/jn.00696.2003. [PubMed] [CrossRef] [Google Scholar]

397. Vartanian O., Goel V. Neuroanatomical correlates of aesthetic preference for paintings. Neuroreport. 2004;15(5):893–897. doi: 10.1097/00001756-200404090-00032. [PubMed] [CrossRef] [Google Scholar]

398. Cupchik G. C., Vartanian O., Crawley A., Mikulis D. J. Viewing artworks: contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain and Cognition. 2009;70(1):84–91. doi: 10.1016/j.bandc.2009.01.003. [PubMed] [CrossRef] [Google Scholar]

399. Jacobsen T., Schubotz R. I., Höfel L., Cramon D. Y. V. Brain correlates of aesthetic judgment of beauty. Neuroimage. 2006;29(1):276–285. doi: 10.1016/j.neuroimage.2005.07.010. [PubMed] [CrossRef] [Google Scholar]

400. Di Dio C., Macaluso E., Rizzolatti G. The golden beauty: brain response to classical and renaissance sculptures. PLoS One. 2007;2(11):p. e1201. doi: 10.1371/journal.pone.0001201. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

401. Babiloni F., Cherubino P., Graziani I., et al. The great beauty: a neuroaesthetic study by neuroelectric imaging during the observation of the real Michelangelo’s Moses sculpture. Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC); August 2014; Chicago, IL, USA. pp. 6965–6968. [PubMed] [Google Scholar]

402. Babiloni F., Rossi D., Cherubino P., et al. The first impression is what matters: a neuroaesthetic study of the cerebral perception and appreciation of paintings by Titian. Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); August 2015; Milano, Italy. pp. 7990–7993. [PubMed] [CrossRef] [Google Scholar]

403. Cartocci G., Maglione A. G., Modica E., et al. The “NeuroDante project”: neurometric measurements of participant’s reaction to literary auditory stimuli from Dante’s “Divina Commedia”. Proceedings of the International Workshop on Symbiotic Interaction; September 2016; Padua, Italy. pp. 52–64. [CrossRef] [Google Scholar]

404. Genco S. J., Pohlmann A. P., Steidl P. Neuromarketing for Dummies. Hoboken, NJ, USA: John Wiley & Sons; 2013. [Google Scholar]

405. Murphy E. R., Illes J., Reiner P. B. Neuroethics of neuromarketing. Journal of Consumer Behaviour. 2008;7(4-5):293–302. doi: 10.1002/cb.252. [CrossRef] [Google Scholar]

406. Lewis D. Everything you wanted to know about neuromarketing but didn’t know who to ask. 2005. http://www.neuroco.com/

407. Ziegenfuss J. Neuromarketing: evolution of advertising or unethical use of medical technology. The Brownstone Journal. 2005;12 [Google Scholar]

408. Ruskin G. Commercial alert asks senate commerce committee to investigate neuromarketing. Commercial Alert. 2004:p. 30. [Google Scholar]

409. Acuff D. Taking the guesswork out of responsible marketing. Young Consumers. 2005;6(4):68–71. doi: 10.1108/17473610510701331. [CrossRef] [Google Scholar]

410. Javor A., Koller M., Lee N., Chamberlain L., Ransmayr G. Neuromarketing and consumer neuroscience: contributions to neurology. BMC Neurology. 2013;13(1):p. 13. doi: 10.1186/1471-2377-13-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

411. Perrachione T. K., Perrachione J. R. Brains and brands: developing mutually informative research in neuroscience and marketing. Journal of Consumer Behaviour. 2008;7(4-5):303–318. doi: 10.1002/cb.253. [CrossRef] [Google Scholar]

412. Senior C., Lee N., Butler M. PERSPECTIVE-organizational cognitive neuroscience. Organization Science. 2011;22(3):804–815. doi: 10.1287/orsc.1100.0532. [CrossRef] [Google Scholar]

413. Green S., Holbert N. Gifts of the neuro-magi: science and speculation in the age of neuromarketing. Marketing Research. 2012;24(1):10–14. [Google Scholar]

414. Dinu G., Tanase A.-C., Dinu L., Tanase F.-D. The new techniques for handling consumer behaviour. Proceedings of the 21st International DAAAM Symposium & Annals of DAAM for 2010; October 2010; Zadar, Croatia. [Google Scholar]

415. Trettel A., et al. Ethics and Neuromarketing. Cham, Switzerland: Springer; 2017. Transparency and reliability in neuromarketing research; pp. 101–111. [Google Scholar]

416. Blankertz B., Acqualagna L., Dähne S., et al. The Berlin brain-computer interface: progress beyond communication and control. Frontiers in Neuroscience. 2016;10:p. 530. doi: 10.3389/fnins.2016.00530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

417. Garner W. R., Hake H. W., Eriksen C. W. Operationism and the concept of perception. Psychological Review. 1956;63(3):149–159. doi: 10.1037/h0042992. [PubMed] [CrossRef] [Google Scholar]

418. Berns G. S., Moore S. E. A neural predictor of cultural popularity. Journal of Consumer Psychology. 2012;22(1):154–160. doi: 10.1016/j.jcps.2011.05.001. [CrossRef] [Google Scholar]

419. Falk E. B., Berkman E. T., Lieberman M. D. From neural responses to population behavior. Psychological Science. 2012;23(5):439–445. doi: 10.1177/0956797611434964. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Overview of neuromarketing tools in marketing research.

Neuromarketing toolsWhat is measured?Business applicationAdvantagesLimitations
Metabolic activity in the brain
Functional magnetic resonance imaging (fMRI)Human memory encoding, sensory perception, craving, trust and brand engagement, loyalty, preference, and recallIt is used to test products, advertising campaigns, packaging, designs, and prices; to predict customers' choices or identify their needs; to reposition a brand; and to test sensory characteristics and a celebrity endorsement.High spatial resolution, ability to localize neural processing during consumer choices and consumption experience, valid measure for cognitive and affective responses, and ability to detect changes in chemical composition or changes in the flow fluids in the brainLow temporal resolution, expensive, immobility of participants during the experiments, nonscalable, and ethical barriers
Positron emission tomography (PET)Sensory perception and valence of emotionsIt is used to test new products, advertisements, and packaging designs.High spatial resolution, valid measure for cognitive and affective responses, and ability to detect changes in chemical composition or changes in the flow fluids in the brainPoor temporal resolution, expensive, and invasiveness by the application of radioactive contrast
Electrical activity in the brain
Magnetoencephalography (MEG)Perception, attention, and memoryIt is used to test new products, advertisements, packaging design, and sensory studies and identify needs.Has good temporal resolution and spatial resolution better than that of EEGNeed for a room free from the earth's magnetic field, expensive, and ethical barriers
Electroencephalography (EEG)Attention, engagement, excitement, emotional valence, cognition, memory encoding, recognition, approach withdrawal, and mental workloadIt is used to test advertisements, movie trailers, website design and usability, app and social media, in-store experiences, print and image design, new product, packaging design, pricing, sensory studies, outdoor advertisements, political debate, and other marketing stimuli.High temporal resolution, relative low equipment costs, noninvasiveness, valid measure for cognitive information processing, and portabilityLow spatial resolution, nonscalable, and susceptibility of the results to the influence of the moving artifacts
Transcranial magnetic stimulation (TMS)Attention, cognition, and changes in behaviourIt is used to test new products, advertisements, packaging design, and other marketing stimuli.Portability and possibility of studying specific brain areasExpensive and ethical barriers manipulating brain activity
Steady-state topography (SST)Memory encoding, engagement, emotional engagement, attention, and processing visual and olfactory inputIt is used to test advertisements, movie trailers, prints and images, and brand communication.High temporal resolution and tolerance for high levels of noise or interferencesLow spatial resolution
No brain activity
Eye trackerVisual search, fixation position, eye movement patterns, spatial resolution, excitement, attention, and pupil dilationIt is used to test websites and usability, app and social media, in-store reactions, packaging designs, advertisements and video materials, print and image design, shelf layout, product placement, and aesthetic stimuli. It can test how a consumer filters information and determines the hierarchy of perceptions of the stimulus material.Portability and noninvasivenessLow flexibility since it does not work efficiently with glasses and contact lenses
Physiological response: HR and GSREmotional engagement, valence, arousalIt is used to test advertisements, movie trailers, website design, app and social media, product perception, aesthetic stimuli, and other marketing stimuli. It can measure reactions and consumer measures in both laboratory settings and the natural environment (i.e., store).Portability and noninvasivenessMore informative if combined with other neurometric tools
Indirect measures: reaction timeReaction time and underlying attitudes/evaluationIt is used to test consumer attitudes (for brands and categories), celebrity endorsement (choosing the right option), and salient packaging features/brand image.Less biasedResponds depending on the subject collaboration
Facial codingUnconscious reactions and emotionsIt is used to test advertisements (e.g., dynamic and static) and movie trailers.Real-time data and noninvasivenessSubjectivity