What characteristic of fast nerve fibers permits them to transmit signals perceived as sharp immediate pain?

Baroreceptors are mechanoreceptors located in the carotid sinus and in the aortic arch that help to regulate arterial blood pressure.

From: Biomechatronics, 2019

1. Sessle BJ. Recent developments in pain research: central mechanisms of orofacial pain and its control. J Endod. 1986;12:435–444. [PubMed] [Google Scholar]

2. Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc. 1993;124:115–121. [PubMed] [Google Scholar]

3. Estrela C, Guedes OA, Silva JA, Leles CR, Estrela CR, Pécora JD. Diagnostic and clinical factors associated with pulpal and periapical pain. Braz Dent J. 2011;22:306–311. [PubMed] [Google Scholar]

4. Byers MR. Dental sensory receptors. Int Rev Neurobiol. 1984;25:39–94. [PubMed] [Google Scholar]

5. Byers MR, Närhi MV. Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med. 1999;10:4–39. [PubMed] [Google Scholar]

6. Bergenholtz G, Hørsted-Bindslev P, Reit C. Textbook of endodontology. 2nd ed. Oxford: Wiley-Blackwell Pub; 2010. pp. 33–35. [Google Scholar]

7. Ingle JI, Bakland LK, Baumgartner JC. Ingle's endodontics 6. Ontario: BC Decker; 2008. pp. 136–137. [Google Scholar]

8. Figdor D. Aspects of dentinal and pulpal pain. Pain of dentinal and pulpal origin--a review for the clinician. Ann R Australas Coll Dent Surg. 1994;12:131–142. [PubMed] [Google Scholar]

9. Närhi MV, Hirvonen TJ, Hakumäki MO. Responses of intradental nerve fibres to stimulation of dentine and pulp. Acta Physiol Scand. 1982;115:173–178. [PubMed] [Google Scholar]

10. Närhi M, Jyväsjärvi E, Virtanen A, Huopaniemi T, Ngassapa D, Hirvonen T. Role of intradental A- and C-type nerve fibres in dental pain mechanisms. Proc Finn Dent Soc. 1992;88(Suppl 1):507–516. [PubMed] [Google Scholar]

11. Matthews B, Vongsavan N. Interactions between neural and hydrodynamic mechanisms in dentine and pulp. Arch Oral Biol. 1994;39(Suppl):87S–95S. [PubMed] [Google Scholar]

12. Pashley DH. Mechanisms of dentin sensitivity. Dent Clin North Am. 1990;34:449–473. [PubMed] [Google Scholar]

13. Vongsavan N, Matthews B. The relationship between the discharge of intradental nerves and the rate of fluid flow through dentine in the cat. Arch Oral Biol. 2007;52:640–647. [PubMed] [Google Scholar]

14. Braennstroem M, Astroem A. A study on the mechanism of pain elicited from the dentin. J Dent Res. 1964;43:619–625. [PubMed] [Google Scholar]

15. Gomez N. Bibliographic update work: dental pulp sensory function. Pain. Electron J Endod Rosario. 2011;10:540–552. [Google Scholar]

16. Närhi M, Yamamoto H, Ngassapa D. Function of intradental nociceptors in normal and inflamed teeth. In: Shimono M, Maeda T, Suda H, Takahashi K, editors. Dentin/pulp complex. Tokyo: Quintessence Pub. Co.; 1996. pp. 136–140. [Google Scholar]

17. Dong WK, Chudler EH, Martin RF. Physiological properties of intradental mechanoreceptors. Brain Res. 1985;334:389–395. [PubMed] [Google Scholar]

18. Jyväsjärvi E, Kniffki KD. Cold stimulation of teeth: a comparison between the responses of cat intradental A delta and C fibres and human sensation. J Physiol. 1987;391:193–207. [PMC free article] [PubMed] [Google Scholar]

19. Trowbridge HO. Review of dental pain--histology and physiology. J Endod. 1986;12:445–452. [PubMed] [Google Scholar]

20. Hargreaves KM, Goodis HE, Seltzer S. Seltzer and Bender's dental pulp. Chicago (IL): Quintessence Pub. Co.; 2002. pp. 148–150. [Google Scholar]

21. Närhi MV. The characteristics of intradental sensory units and their responses to stimulation. J Dent Res. 1985;64(Spec No):564–571. [PubMed] [Google Scholar]

22. Bender IB. Pulpal pain diagnosis--a review. J Endod. 2000;26:175–179. [PubMed] [Google Scholar]

23. Närhi M, Virtanen A, Kuhta J, Huopaniemi T. Electrical stimulation of teeth with a pulp tester in the cat. Scand J Dent Res. 1979;87:32–38. [PubMed] [Google Scholar]

24. Torebjörk HE, Hallin RG. Perceptual changes accompanying controlled preferential blocking of A and C fibre responses in intact human skin nerves. Exp Brain Res. 1973;16:321–332. [PubMed] [Google Scholar]

25. Närhi M, Yamamoto H, Ngassapa D, Hirvonen T. The neurophysiological basis and the role of inflammatory reactions in dentine hypersensitivity. Arch Oral Biol. 1994;39(Suppl):23S–30S. [PubMed] [Google Scholar]

26. Byers MR. Effects of inflammation on dental sensory nerves and vice versa. Proc Finn Dent Soc. 1992;88(Suppl 1):499–506. [PubMed] [Google Scholar]

27. Rutz JC, Hatton JF, Hildebolt C, Wells JE, Rowland KC. Localized increases in corticotropin-releasing factor receptors in pulp after dental injury. J Endod. 2007;33:1319–1324. [PubMed] [Google Scholar]

28. Jaber L, Swaim WD, Dionne RA. Immunohistochemical localization of mu-opioid receptors in human dental pulp. J Endod. 2003;29:108–110. [PubMed] [Google Scholar]

29. Dionne RA, Lepinski AM, Gordon SM, Jaber L, Brahim JS, Hargreaves KM. Analgesic effects of peripherally administered opioids in clinical models of acute and chronic inflammation. Clin Pharmacol Ther. 2001;70:66–73. [PubMed] [Google Scholar]

30. Chao D, Bazzy-Asaad A, Balboni G, Xia Y. delta-, but not mu-, opioid receptor stabilizes K(+) homeostasis by reducing Ca(2+) influx in the cortex during acute hypoxia. J Cell Physiol. 2007;212:60–67. [PubMed] [Google Scholar]

31. Fristad I, Bletsa A, Byers M. Inflammatory nerve responses in the dental pulp. Endod Topics. 2010;17:12. [Google Scholar]

32. Kim S, Dörscher-Kim JE, Liu M. Microcirculation of the dental pulp and its autonomic control. Proc Finn Dent Soc. 1989;85:279–287. [PubMed] [Google Scholar]

33. Kim S, Dörscher-Kim JE, Lipowsky HH. Quantitative assessment of microcirculation in the rat dental pulp in response to alpha- and beta-adrenergic agonists. Arch Oral Biol. 1989;34:707–712. [PubMed] [Google Scholar]

34. Wakisaka S, Ichikawa H, Akai M. Distribution and origins of peptide- and catecholamine-containing nerve fibres in the feline dental pulp and effects of cavity preparation on these nerve fibres. J Osaka Univ Dent Sch. 1986;26:17–28. [PubMed] [Google Scholar]

35. Nup C, Rosenberg P, Linke H, Tordik P. Quantitation of catecholamines in inflamed human dental pulp by high-performance liquid chromatography. J Endod. 2001;27:73–75. [PubMed] [Google Scholar]

36. Hargreaves KM, Swift JQ, Roszkowski MT, Bowles W, Garry MG, Jackson DL. Pharmacology of peripheral neuropeptide and inflammatory mediator release. Oral Surg Oral Med Oral Pathol. 1994;78:503–510. [PubMed] [Google Scholar]

37. Sacerdote P, Levrini L. Peripheral mechanisms of dental pain: the role of substance P. Mediators Inflamm. 2012;2012:951920. [PMC free article] [PubMed] [Google Scholar]

38. Kido MA, Ibuki T, Danjo A, Kondo T, Zhang JQ, Yamaza T, et al. Immunocytochemical localization of the neurokinin 1 receptor in rat dental pulp. Arch Histol Cytol. 2005;68:259–265. [PubMed] [Google Scholar]

39. Caviedes-Bucheli J, Gutierrez-Guerra JE, Salazar F, Pichardo D, Moreno GC, Munoz HR. Substance P receptor expression in healthy and inflamed human pulp tissue. Int Endod J. 2007;40:106–111. [PubMed] [Google Scholar]

40. Bowles WR, Withrow JC, Lepinski AM, Hargreaves KM. Tissue levels of immunoreactive substance P are increased in patients with irreversible pulpitis. J Endod. 2003;29:265–267. [PubMed] [Google Scholar]

41. Caviedes-Bucheli J, Azuero-Holguin MM, Gutierrez-Sanchez L, Higuerey-Bermudez F, Pereira-Nava V, Lombana N, et al. The effect of three different rotary instrumentation systems on substance P and calcitonin gene-related peptide expression in human periodontal ligament. J Endod. 2010;36:1938–1942. [PubMed] [Google Scholar]

42. Buck SH, Burks TF. The neuropharmacology of capsaicin: review of some recent observations. Pharmacol Rev. 1986;38:179–226. [PubMed] [Google Scholar]

43. Ichikawa H, Sugimoto T. Vanilloid receptor 1-like receptor-immunoreactive primary sensory neurons in the rat trigeminal nervous system. Neuroscience. 2000;101:719–725. [PubMed] [Google Scholar]

44. Caviedes-Bucheli J, Azuero-Holguin MM, Munoz HR. The effect of capsaicin on substance P expression in pulp tissue inflammation. Int Endod J. 2005;38:30–33. [PubMed] [Google Scholar]

45. Lin SK, Kuo MY, Wang JS, Lee JJ, Wang CC, Huang S, et al. Differential regulation of interleukin-6 and inducible cyclooxygenase gene expression by cytokines through prostaglandin-dependent and -independent mechanisms in human dental pulp fibroblasts. J Endod. 2002;28:197–201. [PubMed] [Google Scholar]

46. Sundqvist G, Rosenquist JB, Lerner UH. Effects of bradykinin and thrombin on prostaglandin formation, cell proliferation and collagen biosynthesis in human dental-pulp fibroblasts. Arch Oral Biol. 1995;40:247–256. [PubMed] [Google Scholar]

47. Coon D, Gulati A, Cowan C, He J. The role of cyclooxygenase-2 (COX-2) in inflammatory bone resorption. J Endod. 2007;33:432–436. [PubMed] [Google Scholar]

48. Tani-Ishii N, Wang CY, Stashenko P. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure. Oral Microbiol Immunol. 1995;10:213–219. [PubMed] [Google Scholar]

49. Wisithphrom K, Murray PE, Windsor LJ. Interleukin-1 alpha alters the expression of matrix metalloproteinases and collagen degradation by pulp fibroblasts. J Endod. 2006;32:186–192. [PubMed] [Google Scholar]

50. Ueda L, Matsushima K. Stimulation of plasminogen activator activity and matrix metalloproteinases of human dental pulp-derived cells by tumor necrosis factor-alpha. J Endod. 2001;27:175–179. [PubMed] [Google Scholar]

51. D'Souza R, Brown LR, Newland JR, Levy BM, Lachman LB. Detection and characterization of interleukin-1 in human dental pulps. Arch Oral Biol. 1989;34:307–313. [PubMed] [Google Scholar]

52. Hosoya S, Ohbayashi E, Matsushima K, Takeuchi H, Yamazaki M, Shibata Y, et al. Stimulatory effect of interleukin-6 on plasminogen activator activity from human dental pulp cells. J Endod. 1998;24:331–334. [PubMed] [Google Scholar]

53. Barkhordar RA, Hayashi C, Hussain MZ. Detection of interleukin-6 in human dental pulp and periapical lesions. Endod Dent Traumatol. 1999;15:26–27. [PubMed] [Google Scholar]

54. Proctor ME, Turner DW, Kaminski EJ, Osetek EM, Heuer MA. Determination and relationship of C-reactive protein in human dental pulps and in serum. J Endod. 1991;17:265–270. [PubMed] [Google Scholar]

55. Güven G, Altun C, Günhan O, Gurbuz T, Basak F, Akbulut E, et al. Co-expression of cyclooxygenase-2 and vascular endothelial growth factor in inflamed human pulp: an immunohistochemical study. J Endod. 2007;33:18–20. [PubMed] [Google Scholar]

56. Holt CI, Hutchins MO, Pileggi R. A real time quantitative PCR analysis and correlation of COX-1 and COX-2 enzymes in inflamed dental pulps following administration of three different NSAIDs. J Endod. 2005;31:799–804. [PubMed] [Google Scholar]

57. Spoto G, Fioroni M, Rubini C, Tripodi D, Perinetti G, Piattelli A. Aspartate aminotransferase activity in human healthy and inflamed dental pulps. J Endod. 2001;27:394–395. [PubMed] [Google Scholar]

58. Spoto G, Fioroni M, Rubini C, Tripodi D, Di Stilio M, Piattelli A. Alkaline phosphatase activity in normal and inflamed dental pulps. J Endod. 2001;27:180–182. [PubMed] [Google Scholar]

59. Warren CA, Mok L, Gordon S, Fouad AF, Gold MS. Quantification of neural protein in extirpated tooth pulp. J Endod. 2008;34:7–10. [PMC free article] [PubMed] [Google Scholar]

60. Wells JE, Rose ET, Rowland KC, Hatton JF. Kv1.4 subunit expression is decreased in neurons of painful human pulp. J Endod. 2007;33:827–829. [PubMed] [Google Scholar]