What does Unrel indicate in the following GPS and WAAS notam?

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−1−33

Navigation Aids

locations close to the edge of the coverage may have

a lower availability of vertical guidance.

c. General Requirements

1.

WAAS avionics must be certified in

accordance with Technical Standard Order (TSO)

TSO−C145a, Airborne Navigation Sensors Using the

(GPS) Augmented by the Wide Area Augmentation

System (WAAS); or TSO−C146a, Stand−Alone

Airborne Navigation Equipment Using the Global

Positioning System (GPS) Augmented by the Wide

Area Augmentation System (WAAS), and installed in

accordance with Advisory Circular (AC) 20−130A,

Airworthiness Approval of Navigation or Flight

Management Systems Integrating Multiple Naviga-

tion Sensors, or AC 20−138A, Airworthiness

Approval of Global Positioning System (GPS)

Navigation Equipment for Use as a VFR and IFR

Navigation System.

2.

GPS/WAAS operation must be conducted in

accordance with the FAA−approved aircraft flight

manual (AFM) and flight manual supplements. Flight

manual supplements will state the level of approach

procedure that the receiver supports. IFR approved

WAAS receivers support all GPS only operations as

long as lateral capability at the appropriate level is

functional. WAAS monitors both GPS and WAAS

satellites and provides integrity.

3.

GPS/WAAS equipment is inherently capable

of supporting oceanic and remote operations if the

operator obtains a fault detection and exclusion

(FDE) prediction program.

4.

Air carrier and commercial operators must

meet the appropriate provisions of their approved

operations specifications.

5.

Prior to GPS/WAAS IFR operation, the pilot

must review appropriate Notices to Airmen (NOT-

AMs) and aeronautical information. This

information is available on request from a Flight

Service Station. The FAA will provide NOTAMs to

advise pilots of the status of the WAAS and level of

service available.

(a)

The term UNRELIABLE is used in

conjunction with GPS and WAAS NOTAMs. The

term UNRELIABLE is an advisory to pilots

indicating the expected level of WAAS service

(LNAV/VNAV, LPV) may not be available;

e.g., !BOS BOS WAAS LPV AND LNAV/VNAV

MNM UNREL WEF 0305231700 

− 0305231815.

WAAS UNRELIABLE NOTAMs are predictive in

nature and published for flight planning purposes.

Upon commencing an approach at locations

NOTAMed WAAS UNRELIABLE, if the WAAS

avionics indicate LNAV/VNAV or LPV service is

available, then vertical guidance may be used to

complete the approach using the displayed level of

service. Should an outage occur during the approach,

reversion to LNAV minima may be required.

(1)

Area−wide WAAS UNAVAILABLE

NOTAMs indicate loss or malfunction of the WAAS

system. In flight, Air Traffic Control will advise

pilots requesting a GPS or RNAV (GPS) approach of

WAAS UNAVAILABLE NOTAMs if not contained

in the ATIS broadcast.

(2)

Site−specific WAAS UNRELIABLE

NOTAMs indicate an expected level of service,

e.g., LNAV/VNAV or LPV may not be available.

Pilots must request site−specific WAAS NOTAMs

during flight planning. In flight, Air Traffic Control

will not advise pilots of WAAS UNRELIABLE

NOTAMs.

(3)

When the approach chart is annotated

with the   symbol, site−specific WAAS UNRELI-
ABLE NOTAMs or Air Traffic advisories are not

provided for outages in WAAS LNAV/VNAV and

LPV vertical service. Vertical outages may occur

daily at these locations due to being close to the edge

of WAAS system coverage. Use LNAV or circling

minima for flight planning at these locations, whether

as a destination or alternate. For flight operations at

these locations, when the WAAS avionics indicate

that LNAV/VNAV or LPV service is available, then

the vertical guidance may be used to complete the

approach using the displayed level of service. Should

an outage occur during the procedure, reversion to

LNAV minima may be required.

NOTE

Area

−wide WAAS UNAVAILABLE NOTAMs apply to all

airports in the WAAS UNAVAILABLE area designated inthe NOTAM, including approaches at airports where an

approach chart is annotated with the 

 symbol.

6.

GPS/WAAS was developed to be used within

SBAS GEO coverage (WAAS or other interoperable

system) without the need for other radio navigation

equipment appropriate to the route of flight to be

flown. Outside the SBAS coverage or in the event of

a WAAS failure, GPS/WAAS equipment reverts to


Page 2

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−1−34

Navigation Aids

GPS−only operation and satisfies the requirements

for basic GPS equipment.

7.

Unlike TSO−C129 avionics, which were

certified as a supplement to other means of

navigation, WAAS avionics are evaluated without

reliance on other navigation systems. As such,

installation of WAAS avionics does not require the

aircraft to have other equipment appropriate to the

route to be flown.

(a)

Pilots with WAAS receivers may flight

plan to use any instrument approach procedure

authorized for use with their WAAS avionics as

the planned approach at a required alternate, with

the following restrictions. When using WAAS at

an alternate airport, flight planning must be based

on flying the RNAV (GPS) LNAV or circling minima

line, or minima on a GPS approach procedure, or

conventional approach procedure with “or GPS” in

the title. Code of Federal Regulation (CFR) Part 91

nonprecision weather requirements must be used for

planning. Upon arrival at an alternate, when the

WAAS navigation system indicates that LNAV/

VNAV or LPV service is available, then vertical

guidance may be used to complete the approach using

the displayed level of service. The FAA has begun
removing the 

  NA (Alternate Minimums Not

Authorized) symbol from select RNAV (GPS) and

GPS approach procedures so they may be used by

approach approved WAAS receivers at alternate

airports. Some approach procedures will still require
the 

  NA for other reasons, such as no weather

reporting, so it cannot be removed from all

procedures. Since every procedure must be individu-
ally evaluated, removal of the 

NA

 from RNAV

(GPS) and GPS procedures will take some time.

NOTE

Properly trained and approved, as required, TSO-C145()and TSO-C146() equipped users (WAAS users) with andusing approved baro-VNAV equipment  may plan forLNAV/VNAV DA at an alternate airport. Specificallyauthorized WAAS users with and using approvedbaro-VNAV equipment may also plan for RNP 0.3 DA at thealternate airport as long as the pilot has verified RNP

availability through an approved prediction program.

d. Flying Procedures with WAAS

1.

WAAS receivers support all basic GPS

approach functions and provide additional capabilit-

ies. One of the major improvements is the ability to

generate glide path guidance, independent of ground

equipment or barometric aiding. This eliminates

several problems such as hot and cold temperature

effects, incorrect altimeter setting or lack of a local

altimeter source. It also allows approach procedures

to be built without the cost of installing ground

stations at each airport or runway. Some approach

certified receivers may only generate a glide path

with performance similar to Baro−VNAV and are

only approved to fly the LNAV/VNAV line of minima

on the RNAV (GPS) approach charts. Receivers with

additional capability (including faster update rates

and smaller integrity limits) are approved to fly the

LPV line of minima. The lateral integrity changes

dramatically from the 0.3 NM (556 meter) limit for

GPS, LNAV and LNAV/VNAV approach mode, to 40

meters for LPV. It also provides vertical integrity

monitoring, which bounds the vertical error to 50

meters for LNAV/VNAV and LPVs with minima of

250’ or above, and bounds the vertical error to 35

meters for LPVs with minima below 250’.

2.

When an approach procedure is selected and

active, the receiver will notify the pilot of the most

accurate level of service supported by the combina-

tion of the WAAS signal, the receiver, and the

selected approach, using the naming conventions on

the minima lines of the selected approach procedure.

For example, if an approach is published with LPV

minima and the receiver is only certified for

LNAV/VNAV, the equipment would indicate

“LNAV/VNAV available,” even though the WAAS

signal would support LPV. If flying an existing

LNAV/VNAV procedure with no LPV minima, the

receiver will notify the pilot “LNAV/VNAV

available,” even if the receiver is certified for LPV

and the signal supports LPV. If the signal does not

support vertical guidance on procedures with LPV

and/or LNAV/VNAV minima, the receiver annunci-

ation will read “LNAV available.” On lateral only

procedures with LP and LNAV minima the receiver

will indicate “LP available” or “LNAV available”

based on the level of lateral service available. Once

the level of service notification has been given, the

receiver will operate in this mode for the duration of

the approach procedure, unless that level of service

becomes unavailable. The receiver cannot change

back to a more accurate level of service until the next

time an approach is activated.

NOTE

Receivers do not “fail down” to lower levels of service
once the approach has been activated. If only the


Page 3

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−1−35

Navigation Aids

vertical off flag appears, the pilot may elect to use theLNAV minima if the rules under which the flight isoperating allow changing the type of approach being flownafter commencing the procedure. If the lateral integritylimit is exceeded on an LP approach, a missed approachwill be necessary since there is no way to reset the lateral

alarm limit while the approach is active.

3.

Another additional feature of WAAS receiv-

ers is the ability to exclude a bad GPS signal and

continue operating normally. This is normally

accomplished by the WAAS correction information.

Outside WAAS coverage or when WAAS is not

available, it is accomplished through a receiver

algorithm called FDE. In most cases this operation

will be invisible to the pilot since the receiver will

continue to operate with other available satellites

after excluding the “bad” signal. This capability

increases the reliability of navigation.

4.

Both lateral and vertical scaling for the

LNAV/VNAV and LPV approach procedures are

different than the linear scaling of basic GPS. When

the complete published procedure is flown, +/−1 NM

linear scaling is provided until two (2) NM prior to the

FAF, where the sensitivity increases to be similar to

the angular scaling of an ILS. There are two differ-

ences in the WAAS scaling and ILS: 1) on long final

approach segments, the initial scaling will be

+/−0.3 NM to achieve equivalent performance to

GPS (and better than ILS, which is less sensitive far

from the runway); 2) close to the runway threshold,

the scaling changes to linear instead of continuing to

become more sensitive. The width of the final

approach course is tailored so that the total width is

usually 700 feet at the runway threshold. Since the

origin point of the lateral splay for the angular portion

of the final is not fixed due to antenna placement like

localizer, the splay angle can remain fixed, making a

consistent width of final for aircraft being vectored

onto the final approach course on different length

runways. When the complete published procedure is

not flown, and instead the aircraft needs to capture the

extended final approach course similar to ILS, the

vector to final (VTF) mode is used. Under VTF the

scaling is linear at +/−1 NM until the point where the

ILS angular splay reaches a width of +/−1 NM

regardless of the distance from the FAWP.

5.

The WAAS scaling is also different than GPS

TSO−C129 in the initial portion of the missed

approach. Two differences occur here. First, the

scaling abruptly changes from the approach scaling to

the missed approach scaling, at approximately the

departure end of the runway or when the pilot

requests missed approach guidance rather than

ramping as GPS does. Second, when the first leg of

the missed approach is a Track to Fix (TF) leg aligned

within 3 degrees of the inbound course, the receiver

will change to 0.3 NM linear sensitivity until the turn

initiation point for the first waypoint in the missed

approach procedure, at which time it will abruptly

change to terminal (+/−1 NM) sensitivity. This allows

the elimination of close in obstacles in the early part

of the missed approach that may cause the DA to be

raised.

6.

A new method has been added for selecting

the final approach segment of an instrument

approach. Along with the current method used by

most receivers using menus where the pilot selects the

airport, the runway, the specific approach procedure

and finally the IAF, there is also a channel number

selection method. The pilot enters a unique 5−digit

number provided on the approach chart, and the

receiver recalls the matching final approach segment

from the aircraft database. A list of information

including the available IAFs is displayed and the pilot

selects the appropriate IAF. The pilot should confirm

that the correct final approach segment was loaded by

cross checking the Approach ID, which is also

provided on the approach chart.

7.

The Along−Track Distance (ATD) during the

final approach segment of an LNAV procedure (with

a minimum descent altitude) will be to the MAWP. On

LNAV/VNAV and LPV approaches to a decision

altitude, there is no missed approach waypoint so the

along−track distance is displayed to a point normally

located at the runway threshold. In most cases the

MAWP for the LNAV approach is located on the

runway threshold at the centerline, so these distances

will be the same. This distance will always vary

slightly from any ILS DME that may be present, since

the ILS DME is located further down the runway.

Initiation of the missed approach on the LNAV/

VNAV and LPV approaches is still based on reaching

the decision altitude without any of the items listed in

14 CFR Section 91.175 being visible, and must not be

delayed until the ATD reaches zero. The WAAS

receiver, unlike a GPS receiver, will automatically

sequence past the MAWP if the missed approach

procedure has been designed for RNAV. The pilot


Page 4

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−1−36

Navigation Aids

may also select missed approach prior to the MAWP,

however, navigation will continue to the MAWP prior

to waypoint sequencing taking place.

1

1

20. Ground Based Augmentation

System (GBAS) Landing System (GLS)

a. General

1.

The GLS provides precision navigation

guidance for exact alignment and descent of aircraft

on approach to a runway. It provides differential

augmentation to the Global Navigation Satellite

System (GNSS).

NOTE

GBAS is the ICAO term for Local Area Augmentation
System (LAAS).

2.

LAAS was developed as an “ILS look−alike”

system from the pilot perspective. LAAS is based on

GPS signals augmented by ground equipment and has

been developed to provide GLS precision approaches

similar to ILS at airfields.

3.

GLS provides guidance similar to ILS

approaches for the final approach segment; portions

of the GLS approach prior to and after the final

approach segment will be based on Area Navigation

(RNAV) or Required Navigation Performance

(RNP).

4.

The equipment consists of a GBAS Ground

Facility (GGF), four reference stations, a VHF Data

Broadcast (VDB) uplink antenna, and an aircraft

GBAS receiver.

b. Procedure

1.

Pilots will select the five digit GBAS channel

number of the associated approach within the Flight

Management System (FMS) menu or manually select

the five digits (system dependent). Selection of the

GBAS channel number also tunes the VDB.

2.

Following procedure selection, confirmation

that the correct LAAS procedure is loaded can be

accomplished by cross checking the charted

Reference Path Indicator (RPI) or approach ID with

the cockpit displayed RPI or audio identification of

the RPI with Morse Code (for some systems).

3.

The pilot will fly the GLS approach using the

same techniques as an ILS, once selected and

identified.

1

1

21. Precision Approach Systems other

than ILS, GLS, and MLS

a. General

Approval and use of precision approach systems

other than ILS, GLS and MLS require the issuance of

special instrument approach procedures.

b. Special Instrument Approach Procedure

1.

Special instrument approach procedures

must be issued to the aircraft operator if pilot training,

aircraft equipment, and/or aircraft performance is

different than published procedures. Special instru-

ment approach procedures are not distributed for

general public use. These procedures are issued to an

aircraft operator when the conditions for operations

approval are satisfied.

2.

General aviation operators requesting ap-

proval for special procedures should contact the local

Flight Standards District Office to obtain a letter of

authorization. Air carrier operators requesting

approval for use of special procedures should contact

their Certificate Holding District Office for authoriz-

ation through their Operations Specification.

c. Transponder Landing System (TLS)

1.

The TLS is designed to provide approach

guidance utilizing existing airborne ILS localizer,

glide slope, and transponder equipment.

2.

Ground equipment consists of a transponder

interrogator, sensor arrays to detect lateral and

vertical position, and ILS frequency transmitters. The

TLS detects the aircraft’s position by interrogating its

transponder. It then broadcasts ILS frequency signals

to guide the aircraft along the desired approach path.

3.

TLS instrument approach procedures are

designated Special Instrument Approach Procedures.

Special aircrew training is required. TLS ground

equipment provides approach guidance for only one

aircraft at a time. Even though the TLS signal is

received using the ILS receiver, no fixed course or

glidepath is generated. The concept of operation is

very similar to an air traffic controller providing radar

vectors, and just as with radar vectors, the guidance

is valid only for the intended aircraft. The TLS

ground equipment tracks one aircraft, based on its

transponder code, and provides correction signals to

course and glidepath based on the position of the

tracked aircraft. Flying the TLS corrections com-

puted for another aircraft will not provide guidance


Page 5

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−1−37

Navigation Aids

relative to the approach; therefore, aircrews must not

use the TLS signal for navigation unless they have

received approach clearance and completed the

required coordination with the TLS ground equip-

ment operator. Navigation fixes based on

conventional NAVAIDs or GPS are provided in the

special instrument approach procedure to allow

aircrews to verify the TLS guidance.

d. Special Category I Differential GPS (SCAT

I DGPS)

1.

The SCAT−I DGPS is designed to provide

approach guidance by broadcasting differential

correction to GPS.

2.

SCAT−I DGPS procedures require aircraft

equipment and pilot training.

3.

Ground equipment consists of GPS receivers

and a VHF digital radio transmitter. The SCAT−I

DGPS detects the position of GPS satellites relative

to GPS receiver equipment and broadcasts differen-

tial corrections over the VHF digital radio.

4.

Category I Ground Based Augmentation

System (GBAS) will displace SCAT−I DGPS as the

public use service.

REFERENCE

AIM, Para 5

−4−7f, Instrument Approach Procedures.


Page 6

  Previous Page Page 70 Next Page  

What does Unrel indicate in the following GPS and WAAS notam?

  Previous Page Page 70 Next Page  

Page 7

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−1

Area Navigation (RNAV) and Required Navigation Performance (RNP)

Section 2. Area Navigation (RNAV) and Required

Navigation Performance (RNP)

1

2

1. Area Navigation (RNAV)

a. General.

RNAV is a method of navigation that

permits aircraft operation on any desired flight path

within the coverage of ground or space based

navigation aids or within the limits of the capability

of self−contained aids, or a combination of these. In

the future, there will be an increased dependence on

the use of RNAV in lieu of routes defined by

ground−based navigation aids.

RNAV routes and terminal procedures, including

departure procedures (DPs) and standard terminal

arrivals (STARs), are designed with RNAV systems

in mind. There are several potential advantages of

RNAV routes and procedures:

1.

Time and fuel savings,

2.

Reduced dependence on radar vectoring,

altitude, and speed assignments allowing a reduction

in required ATC radio transmissions, and

3.

More efficient use of airspace.

In addition to information found in this manual,

guidance for domestic RNAV DPs, STARs, and

routes may also be found in Advisory Circu-

lar 90−100A, U.S. Terminal and En Route Area

Navigation (RNAV) Operations.

b. RNAV Operations.

RNAV procedures, such

as DPs and STARs, demand strict pilot awareness and

maintenance of the procedure centerline. Pilots

should possess a working knowledge of their aircraft

navigation system to ensure RNAV procedures are

flown in an appropriate manner. In addition, pilots

should have an understanding of the various

waypoint and leg types used in RNAV procedures;

these are discussed in more detail below.

1. Waypoints.

A waypoint is a predetermined

geographical position that is defined in terms of

latitude/longitude coordinates. Waypoints may be a

simple named point in space or associated with

existing navaids, intersections, or fixes. A waypoint

is most often used to indicate a change in direction,

speed, or altitude along the desired path. RNAV

procedures make use of both fly−over and fly−by

waypoints.

(a) Fly

−by waypoints. Fly−by waypoints

are used when an aircraft should begin a turn to the

next course prior to reaching the waypoint separating

the two route segments. This is known as turn

anticipation.

(b) Fly

−over waypoints. Fly−over way-

points are used when the aircraft must fly over the

point prior to starting a turn.

NOTE

FIG 1

−2−1 illustrates several differences between a fly−by

and a fly

−over waypoint.

FIG 1

−2−1

Fly

−by and Fly−over Waypoints

2. RNAV Leg Types.

A leg type describes the

desired path proceeding, following, or between

waypoints on an RNAV procedure. Leg types are

identified by a two−letter code that describes the path

(e.g., heading, course, track, etc.) and the termination

point (e.g., the path terminates at an altitude, distance,

fix, etc.). Leg types used for procedure design are

included in the aircraft navigation database, but not

normally provided on the procedure chart. The

narrative depiction of the RNAV chart describes how

a procedure is flown. The “path and terminator

concept” defines that every leg of a procedure has a

termination point and some kind of path into that

termination point. Some of the available leg types are

described below.


Page 8

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−2

Area Navigation (RNAV) and Required Navigation Performance (RNP)

(a) Track to Fix.

A Track to Fix (TF) leg is

intercepted and acquired as the flight track to the

following waypoint. Track to a Fix legs are

sometimes called point−to−point legs for this reason.
Narrative: “on track 087 to CHEZZ WP.”

 See

FIG 1−2−2.

(b) Direct to Fix.

A Direct to Fix (DF) leg is

a path described by an aircraft’s track from an initial

area direct to the next waypoint. Narrative: “left
turn direct BARGN WP.”

 See FIG 1−2−3.

FIG 1

−2−2

Track to Fix Leg Type

FIG 1

−2−3

Direct to Fix Leg Type


Page 9

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−3

Area Navigation (RNAV) and Required Navigation Performance (RNP)

(c) Course to Fix.

A Course to Fix (CF) leg

is a path that terminates at a fix with a specified course

at that fix. Narrative: “on course 078 to PRIMY
WP.”

 See FIG 1−2−4.

FIG 1

−2−4

Course to Fix Leg Type

(d) Radius to Fix.

A Radius to Fix (RF) leg

is defined as a constant radius circular path around a

defined turn center that terminates at a fix. See

FIG 1−2−5.

FIG 1

−2−5

Radius to Fix Leg Type

(e) Heading.

A Heading leg may be defined

as, but not limited to, a Heading to Altitude (VA),

Heading to DME range (VD), and Heading to Manual

Termination, i.e., Vector (VM). Narrative: “climb
heading 350 to 1500”, “heading 265, at 9 DME west

of PXR VORTAC, right turn heading 360”, “fly
heading 090, expect radar vectors to DRYHT INT.”

3. Navigation Issues.

Pilots should be aware

of their navigation system inputs, alerts, and

annunciations in order to make better−informed

decisions. In addition, the availability and suitability

of particular sensors/systems should be considered.

(a) GPS.

Operators using TSO−C129 sys-

tems should ensure departure and arrival airports are

entered to ensure proper RAIM availability and CDI

sensitivity.

(b) DME/DME.

Operators should be aware

that DME/DME position updating is dependent on

FMS logic and DME facility proximity, availability,

geometry, and signal masking.

(c) VOR/DME.

Unique VOR characteris-

tics may result in less accurate values from

VOR/DME position updating than from GPS or

DME/DME position updating.

(d) Inertial Navigation.

Inertial reference

units and inertial navigation systems are often

coupled with other types of navigation inputs,

e.g., DME/DME or GPS, to improve overall

navigation system performance.

NOTE

Specific inertial position updating requirements may
apply.

4. Flight Management System (FMS).

An

FMS is an integrated suite of sensors, receivers, and

computers, coupled with a navigation database.

These systems generally provide performance and

RNAV guidance to displays and automatic flight

control systems.
Inputs can be accepted from multiple sources such as

GPS, DME, VOR, LOC and IRU. These inputs may

be applied to a navigation solution one at a time or in

combination. Some FMSs provide for the detection

and isolation of faulty navigation information.
When appropriate navigation signals are available,

FMSs will normally rely on GPS and/or DME/DME

(that is, the use of distance information from two or

more DME stations) for position updates. Other

inputs may also be incorporated based on FMS

system architecture and navigation source geometry.

NOTE

DME/DME inputs coupled with one or more IRU(s) are
often abbreviated as DME/DME/IRU or D/D/I.


Page 10

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−4

Area Navigation (RNAV) and Required Navigation Performance (RNP)

1

2

2. Required Navigation Performance

(RNP)

a. General.

RNP is RNAV with on−board

navigation monitoring and alerting, RNP is also a

statement of navigation performance necessary for

operation within a defined airspace. A critical

component of RNP is the ability of the aircraftnavigation system to monitor its achieved navigationperformance, and to identify for the pilot whether theoperational requirement is, or is not being met during

an operation

. This on−board performance monitor-

ing and alerting capability therefore allows a lessened

reliance on air traffic control intervention (via radar

monitoring, automatic dependent surveillance

(ADS), multilateration, communications), and/or

route separation to achieve the overall safety of the

operation. RNP capability of the aircraft is a major

component in determining the separation criteria to

ensure that the overall containment of the operation

is met.
The RNP capability of an aircraft will vary depending

upon the aircraft equipment and the navigation

infrastructure. For example, an aircraft may be

equipped and certified for RNP 1.0, but may not be

capable of RNP 1.0 operations due to limited navaid

coverage.

b. RNP Operations.

1. RNP Levels.

An RNP “level” or “type” is

applicable to a selected airspace, route, or procedure.

As defined in the Pilot/Controller Glossary, the RNP

Level or Type is a value typically expressed as a

distance in nautical miles from the intended

centerline of a procedure, route, or path. RNP

applications also account for potential errors at some

multiple of RNP level (e.g., twice the RNP level).

(a) Standard RNP Levels.

U.S. standard

values supporting typical RNP airspace are as

specified in TBL 1−2−1 below. Other RNP levels as

identified by ICAO, other states and the FAA may

also be used.

(b) Application of Standard RNP Levels.

U.S. standard levels of RNP typically used for

various routes and procedures supporting RNAV

operations may be based on use of a specific

navigational system or sensor such as GPS, or on

multi−sensor RNAV systems having suitable perfor-

mance.

(c) Depiction of Standard RNP Levels. 

The

applicable RNP level will be depicted on affected

charts and procedures.

TBL 1

−2−1

U.S. Standard RNP Levels

RNP Level

Typical Application

Primary Route Width (NM) 

Centerline to Boundary

0.1 to 1.0

RNP AR Approach Segments

0.1 to 1.0

0.3 to 1.0

RNP Approach Segments

0.3 to 1.0

1

Terminal and En Route

1.0

2

En Route

2.0

NOTE

1. The “performance” of navigation in RNP refers not only to the level of accuracy of a particular sensor or aircraftnavigation system, but also to the degree of precision with which the aircraft will be flown. 2. Specific required flight procedures may vary for different RNP levels.


Page 11

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−5

Area Navigation (RNAV) and Required Navigation Performance (RNP)

TBL 1

−2−2

RNP Levels Supported for International Operations

RNP Level

Typical Application

4

Projected for oceanic/remote areas where 30 NM horizontal separation is applied

10

Oceanic/remote areas where 50 NM lateral separation is applied

c. Other RNP Applications Outside the U.S.

The FAA and ICAO member states have led

initiatives in implementing the RNP concept to

oceanic operations. For example, RNP−10 routes

have been established in the northern Pacific

(NOPAC) which has increased capacity and

efficiency by reducing the distance between tracks

to 50 NM. (See TBL 1−2−2.)

d. Aircraft and Airborne Equipment Eligibility

for RNP Operations.

Aircraft meeting RNP criteria

will have an appropriate entry including special

conditions and limitations in its Aircraft Flight

Manual (AFM), or supplement. Operators of aircraft

not having specific AFM−RNP certification may be

issued operational approval including special condi-

tions and limitations for specific RNP levels.

NOTE

Some airborne systems use Estimated Position Uncer-tainty (EPU) as a measure of the current estimatednavigational performance. EPU may also be referred to asActual Navigation Performance (ANP) or Estimated

Position Error (EPE).

1

2

3. Use of Suitable Area Navigation

(RNAV) Systems on Conventional
Procedures and Routes

a. Discussion.

This paragraph sets forth policy,

while providing operational and airworthiness

guidance regarding the suitability and use of RNAV

systems when operating on, or transitioning to,

conventional, non−RNAV routes and procedures

within the U.S. National Airspace System (NAS):

1.

Use of a suitable RNAV system as a

Substitute Means of Navigation when a Very−High

Frequency (VHF) Omni−directional Range (VOR),

Distance Measuring Equipment (DME), Tactical Air

Navigation (TACAN), VOR/TACAN (VORTAC),

VOR/DME, Non−directional Beacon (NDB), or

compass locator facility including locator outer

marker and locator middle marker is out−of−service

(that is, the navigation aid (NAVAID) information is

not available); an aircraft is not equipped with an

Automatic Direction Finder (ADF) or DME; or the

installed ADF or DME on an aircraft is not

operational. For example, if equipped with a suitable

RNAV system, a pilot may hold over an out−of−

service NDB.

2.

Use of a suitable RNAV system as an

Alternate Means of Navigation when  a VOR, DME,

VORTAC, VOR/DME, TACAN, NDB, or compass

locator facility including locator outer marker and

locator middle marker is operational and the

respective aircraft is equipped with operational

navigation equipment that is compatible with

conventional navaids. For example, if equipped with

a suitable RNAV system, a pilot may fly a procedure

or route based on operational VOR using that RNAV

system without monitoring the VOR.

NOTE

1. Additional information and associated requirementsare available in Advisory Circular 90-108 titled “Use ofSuitable RNAV Systems on Conventional Routes and

Procedures.”

2. Good planning and knowledge of your RNAV system are
critical for safe and successful operations.

3. Pilots planning to use their RNAV system as a substitute
means of navigation guidance in lieu of an out

−of−service

NAVAID

 may need to advise ATC of this intent and

capability.

4. The navigation database should be current for theduration of the flight. If the AIRAC cycle will changeduring flight, operators and pilots should establishprocedures to ensure the accuracy of navigation data,including suitability of navigation facilities used to definethe routes and procedures for flight.  To facilitate validatingdatabase currency, the FAA has developed procedures forpublishing the amendment date that instrument approachprocedures were last revised. The amendment date followsthe amendment number, e.g., Amdt 4 14Jan10. Currency ofgraphic departure procedures and STARs may beascertained by the numerical designation in the proceduretitle. If an amended chart is published for the procedure, or

the procedure amendment date shown on the chart is on or


Page 12

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−6

Area Navigation (RNAV) and Required Navigation Performance (RNP)

after the expiration date of the database, the operator must
not use the database to conduct the operation.

b. Types of RNAV Systems that Qualify as a

Suitable RNAV System. 

When installed in accord-

ance with appropriate airworthiness installation

requirements and operated in accordance with

applicable operational guidance (e.g., aircraft flight

manual and Advisory Circular material), the

following systems qualify as a suitable RNAV

system:

1.

An RNAV system with TSO−C129/

−C145/−C146 equipment, installed in accordance

with AC 20−138, Airworthiness Approval of Global

Positioning System (GPS) Navigation Equipment for

Use as a VFR and IFR Supplemental Navigation

System, or AC 20−130A, Airworthiness Approval of

Navigation or Flight Management Systems Integrat-

ing Multiple Navigation Sensors, and authorized for

instrument flight rules (IFR) en route and terminal

operations (including those systems previously

qualified for “GPS in lieu of ADF or DME”

operations), or

2.

An RNAV system with DME/DME/IRU

inputs that is compliant with the equipment

provisions of AC 90−100A, U.S. Terminal and

En Route Area Navigation (RNAV) Operations, for

RNAV routes. A table of compliant equipment is

available at the following website:
h t t p : / / w w w . f a a . g o v / a b o u t / o f f i c e _ o r g /headquarters_offices/avs/offices/afs/afs400/afs47

0/policy_guidance/

NOTE

Approved RNAV systems using DME/DME/IRU, withoutGPS/WAAS position input, may only be used as a substitutemeans of navigation when specifically authorized by aNotice to Airmen (NOTAM) or other FAA guidance for aspecific procedure. The NOTAM or other FAA guidanceauthorizing the use of DME/DME/IRU systems will alsoidentify any required DME facilities based on an FAA

assessment of the DME navigation infrastructure.

c. Uses of Suitable RNAV Systems.

Subject to

the operating requirements, operators may use a

suitable RNAV system in the following ways.

1.

Determine aircraft position relative to, or

distance from a VOR (see NOTE 5 below), TACAN,

NDB, compass locator, DME fix; or a named fix

defined by a VOR radial, TACAN course, NDB

bearing, or compass locator bearing intersecting a

VOR or localizer course.

2.

Navigate to or from a VOR, TACAN, NDB,

or compass locator.

3.

Hold over a VOR, TACAN, NDB, compass

locator, or DME fix.

4.

Fly an arc based upon DME.

NOTE

1. The allowances described in this section apply evenwhen a facility is identified as required on a procedure (for

example, “Note ADF required”).

2. These operations do not include lateral navigation on
localizer

−based courses (including localizer back−course

guidance) without reference to raw localizer data.

3. Unless otherwise specified, a suitable RNAV systemcannot be used for navigation on procedures that areidentified as not authorized (“NA”) without exception bya NOTAM.  For example, an operator may not use a RNAVsystem to navigate on a procedure affected by an expired orunsatisfactory flight inspection, or a procedure that is

based upon a recently decommissioned NAVAID.

4. Pilots may not substitute for the NAVAID (for example,a VOR or NDB) providing lateral guidance for the finalapproach segment. This restriction does not refer toinstrument approach procedures with “or GPS” in the titlewhen using GPS or WAAS. These allowances do not applyto procedures that are identified as not authorized (NA)without exception by a NOTAM, as other conditions maystill exist and result in a procedure not being available. Forexample, these allowances do not apply to a procedureassociated with an expired or unsatisfactory flightinspection, or is based upon a recently decommissioned

NAVAID.

5. For the purpose of paragraph c, “VOR” includes VOR,VOR/DME, and VORTAC facilities and “compasslocator” includes locator outer marker and locator middle

marker.


Page 13

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

1−2−7

Area Navigation (RNAV) and Required Navigation Performance (RNP)

d. Alternate Airport Considerations.

 For the

purposes of flight planning, any required alternate

airport must have an available instrument approach

procedure that does not require the use of GPS. This

restriction includes conducting a conventional

approach at the alternate airport using a substitute

means of navigation that is based upon the use of

GPS. For example, these restrictions would apply

when planning to use GPS equipment as a substitute

means of navigation for an out−of−service VOR that

supports an ILS missed approach procedure at an

alternate airport. In this case, some other approach

not reliant upon the use of GPS must be available.

This restriction does not apply to RNAV systems

using TSO−C145/−C146 WAAS equipment. For

further WAAS guidance see AIM 1−1−19.

1.

For flight planning purposes, TSO-C129()

and TSO-C196() equipped users (GPS users) whose

navigation systems have fault detection and

exclusion (FDE) capability, who perform a preflight

RAIM prediction at the airport where the RNAV

(GPS) approach will be flown, and have proper

knowledge and any required training and/or approval

to conduct a GPS-based IAP, may file based on a

GPS-based IAP at either the destination or the

alternate airport, but not at both locations.  At the

alternate airport, pilots may plan for applicable

alternate airport weather minimums using:

(a)

Lateral navigation (LNAV) or circling

minimum descent altitude (MDA);

(b)

LNAV/vertical navigation (LNAV/

VNAV) DA, if equipped with and using approved

barometric vertical navigation (baro-VNAV) equip-

ment;

(c)

RNP 0.3 DA on an RNAV (RNP) IAP, if

they are specifically authorized users using approved

baro-VNAV equipment and the pilot has verified

required navigation performance (RNP) availability

through an approved prediction program.

2.

If the above conditions cannot be met, any

required alternate airport must have an approved

instrument approach procedure other than GPS that is

anticipated to be operational and available at the

estimated time of arrival, and which the aircraft is

equipped to fly.

3.

This restriction does not apply to

TSO-C145() and TSO-C146() equipped users

(WAAS users). For further WAAS guidance see AIM

1−1−19.


Page 14

  Previous Page Page 78 Next Page  

What does Unrel indicate in the following GPS and WAAS notam?

  Previous Page Page 78 Next Page  

Page 15

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−1

Airport Lighting Aids

Chapter 2. Aeronautical Lighting and 

Other Airport Visual Aids

Section 1. Airport Lighting Aids

2

1

1. Approach Light Systems (ALS)

a.

ALS provide the basic means to transition from

instrument flight to visual flight for landing.

Operational requirements dictate the sophistication

and configuration of the approach light system for a

particular runway.

b.

ALS are a configuration of signal lights starting

at the landing threshold and extending into the

approach area a distance of 2400−3000 feet for

precision instrument runways and 1400−1500 feet for

nonprecision instrument runways. Some systems

include sequenced flashing lights which appear to the

pilot as a ball of light traveling towards the runway at

high speed (twice a second). (See FIG 2−1−1.)

2

1

2. Visual Glideslope Indicators

a. Visual Approach Slope Indicator (VASI)

1.

VASI installations may consist of either 2, 4,

6, 12, or 16 light units arranged in bars referred to as

near, middle, and far bars. Most VASI installations

consist of 2 bars, near and far, and may consist of 2,

4, or 12 light units. Some VASIs consist of three bars,

near, middle, and far, which provide an additional

visual glide path to accommodate high cockpit

aircraft. This installation may consist of either 6 or

16 light units. VASI installations consisting of 2, 4, or

6 light units are located on one side of the runway,

usually the left. Where the installation consists of

12 or 16 light units, the units are located on both sides

of the runway.

2.

Two−bar VASI installations provide one

visual glide path which is normally set at 3 degrees.

Three−bar VASI installations provide two visual

glide paths. The lower glide path is provided by the

near and middle bars and is normally set at 3 degrees

while the upper glide path, provided by the middle

and far bars, is normally 

1

/

4

 degree higher. This

higher glide path is intended for use only by high

cockpit aircraft to provide a sufficient threshold

crossing height. Although normal glide path angles

are three degrees, angles at some locations may be as

high as 4.5 degrees to give proper obstacle clearance.

Pilots of high performance aircraft are cautioned that

use of VASI angles in excess of 3.5 degrees may cause

an increase in runway length required for landing and

rollout.

3.

The basic principle of the VASI is that of color

differentiation between red and white. Each light unit

projects a beam of light having a white segment in the

upper part of the beam and red segment in the lower

part of the beam. The light units are arranged so that

the pilot using the VASIs during an approach will see

the combination of lights shown below.

4.

The VASI is a system of lights so arranged to

provide visual descent guidance information during

the approach to a runway. These lights are visible

from 3−5 miles during the day and up to 20 miles or

more at night. The visual glide path of the VASI

provides safe obstruction clearance within plus or

minus 10 degrees of the extended runway centerline

and to 4 NM from the runway threshold. Descent,

using the VASI, should not be initiated until the

aircraft is visually aligned with the runway. Lateral

course guidance is provided by the runway or runway

lights. In certain circumstances, the safe obstruction

clearance area may be reduced due to local

limitations, or the VASI may be offset from the

extended runway centerline. This will be noted in the

Airport/ Facility Directory.


Page 16

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−2

Airport Lighting Aids

FIG 2

−1−1

Precision & Nonprecision Configurations

NOTE

Civil ALSF

−2 may be operated as SSALR during favorable weather conditions.


Page 17

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−3

Airport Lighting Aids

5.

For 2−bar VASI (4 light units) see FIG 2−1−2.

FIG 2

−1−2

2

−Bar VASI

Far Bar

= Red

= White

Near Bar

Below Glide Path

On Glide Path

Above Glide Path

6.

For 3−bar VASI (6 light units) see FIG 2−1−3.

FIG 2

−1−3

3

−Bar VASI

Far Bar

Middle Bar

Near Bar

Below Both
Glide Paths

On Lower
Glide Path

On Upper
Glide Path

Above Both
Glide Paths

7.

For other VASI configurations see FIG 2−1−4.

FIG 2

−1−4

VASI Variations

2 Bar

2 Light Units

On Glide Path

2 Bar

12 Light Units

On Glide Path

3 Bar

16 Light Units

on Lower Glide Path


Page 18

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−4

Airport Lighting Aids

b. Precision Approach Path Indicator (PAPI).

The precision approach path indicator (PAPI) uses

light units similar to the VASI but are installed in a

single row of either two or four light units. These

lights are visible from about 5 miles during the day

and up to 20 miles at night. The visual glide path of

the PAPI typically provides safe obstruction

clearance within plus or minus 10 degrees of the

extended runway centerline and to 4 SM from the

runway threshold. Descent, using the PAPI, should

not be initiated until the aircraft is visually aligned

with the runway. The row of light units is normally

installed on the left side of the runway and the glide

path indications are as depicted. Lateral course

guidance is provided by the runway or runway lights.

In certain circumstances, the safe obstruction

clearance area may be reduced due to local

limitations, or the PAPI may be offset from the

extended runway centerline. This will be noted in the

Airport/ Facility Directory. (See FIG 2−1−5.)

FIG 2

−1−5

Precision Approach Path Indicator (PAPI)

Slightly High

(3.2 Degrees)

White

Red

High

(More Than

3,5 Degrees)

On Glide Path

(3 Degrees)

Slightly Low

(2.8 Degrees)

Low

(Less Than

2.5 Degrees)

c. Tri

−color Systems. Tri−color visual approach

slope indicators normally consist of a single light unit

projecting a three−color visual approach path into the

final approach area of the runway upon which the

indicator is installed. The below glide path indication

is red, the above glide path indication is amber, and

the on glide path indication is green. These types of

indicators have a useful range of approximately

one−half to one mile during the day and up to

five miles at night depending upon the visibility

conditions. (See FIG 2−1−6.)

FIG 2

−1−6

Tri

−Color Visual Approach Slope Indicator

Amber

Above Glide Path

On Glide Path

Below Glide Path

Amber

Green

Red

NOTE

1. Since the tri

−color VASI consists of a single light source which could possibly be confused with other light sources, pilots

should exercise care to properly locate and identify the light signal.

2. When the aircraft descends from green to red, the pilot may see a dark amber color during the transition from green to
red.


Page 19

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−5

Airport Lighting Aids

FIG 2

−1−7

Pulsating Visual Approach Slope Indicator

Above Glide Path

On Glide Path

Below Glide Path

Slightly Below Glide Path

Threshold

PULSATING WHITE

PULSATING RED

STEADY WHITE

STEADY RED

NOTE

Since the PVASI consists of a single light source which could possibly be confused with other light sources, pilots should
exercise care to properly locate and identify the light signal.

FIG 2

−1−8

Alignment of Elements

Below Glide Path

On Glide Path

Above Glide Path

d. Pulsating Systems.

Pulsating visual ap-

proach slope indicators normally consist of a single

light unit projecting a two−color visual approach

path into the final approach area of the runway upon

which the indicator is installed. The on glide path

indication is a steady white light. The slightly below

glide path indication is a steady red light. If the

aircraft descends further below the glide path, the red

light starts to pulsate. The above glide path indication

is a pulsating white light. The pulsating rate increases

as the aircraft gets further above or below the desired

glide slope. The useful range of the system is about

four miles during the day and up to ten miles at night.

(See FIG 2−1−7.)

e. Alignment of Elements Systems.

Alignment

of elements systems are installed on some small

general aviation airports and are a low−cost system

consisting of painted plywood panels, normally black

and white or fluorescent orange. Some of these

systems are lighted for night use. The useful range of

these systems is approximately three−quarter miles.

To use the system the pilot positions the aircraft so the


Page 20

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−6

Airport Lighting Aids

elements are in alignment. The glide path indications

are shown in FIG 2−1−8.

2

1

3. Runway End Identifier Lights (REIL)

REILs are installed at many airfields to provide rapid

and positive identification of the approach end of a

particular runway. The system consists of a pair of

synchronized flashing lights located laterally on each

side of the runway threshold. REILs may be either

omnidirectional or unidirectional facing the approach

area. They are effective for:

a.

Identification of a runway surrounded by a

preponderance of other lighting.

b.

Identification of a runway which lacks contrast

with surrounding terrain.

c.

Identification of a runway during reduced

visibility.

2

1

4. Runway Edge Light Systems

a.

Runway edge lights are used to outline the

edges of runways during periods of darkness or

restricted visibility conditions. These light systems

are classified according to the intensity or brightness

they are capable of producing: they are the High

Intensity Runway Lights (HIRL), Medium Intensity

Runway Lights (MIRL), and the Low Intensity

Runway Lights (LIRL). The HIRL and MIRL

systems have variable intensity controls, whereas the

LIRLs normally have one intensity setting.

b.

The runway edge lights are white, except on

instrument runways yellow replaces white on the last

2,000 feet or half the runway length, whichever is

less, to form a caution zone for landings.

c.

The lights marking the ends of the runway emit

red light toward the runway to indicate the end of

runway to a departing aircraft and emit green outward

from the runway end to indicate the threshold to

landing aircraft.

2

1

5. In

runway Lighting

a. Runway Centerline Lighting System

(RCLS).

 Runway centerline lights are installed on

some precision approach runways to facilitate

landing under adverse visibility conditions. They are

located along the runway centerline and are spaced at

50−foot intervals. When viewed from the landing

threshold, the runway centerline lights are white until

the last 3,000 feet of the runway. The white lights

begin to alternate with red for the next 2,000 feet, and

for the last 1,000 feet of the runway, all centerline

lights are red.

b. Touchdown Zone Lights (TDZL).

Touch-

down zone lights are installed on some precision

approach runways to indicate the touchdown zone

when landing under adverse visibility conditions.

They consist of two rows of transverse light bars

disposed symmetrically about the runway centerline.

The system consists of steady−burning white lights

which start 100 feet beyond the landing threshold and

extend to 3,000 feet beyond the landing threshold or

to the midpoint of the runway, whichever is less.

c. Taxiway Centerline Lead

−Off Lights. Taxi-

way centerline lead−off lights provide visual

guidance to persons exiting the runway. They are

color−coded to warn pilots and vehicle drivers that

they are within the runway environment or

instrument landing system/microwave landing sys-

tem (ILS/MLS) critical area, whichever is more

restrictive. Alternate green and yellow lights are

installed, beginning with green, from the runway

centerline to one centerline light position beyond the

runway holding position or ILS/MLS critical area

holding position.

d. Taxiway Centerline Lead

−On Lights. Taxi-

way centerline lead−on lights provide visual

guidance to persons entering the runway. These

“lead−on” lights are also color−coded with the same

color pattern as lead−off lights to warn pilots and

vehicle drivers that they are within the runway

environment or instrument landing system/micro-

wave landing system (ILS/MLS) critical area,

whichever is more conservative. The fixtures used for

lead−on lights are bidirectional, i.e., one side emits

light for the lead−on function while the other side

emits light for the lead−off function. Any fixture that

emits yellow light for the lead−off function must also

emit yellow light for the lead−on function.

(See FIG 2−1−14.)

e. Land and Hold Short Lights.

Land and hold

short lights are used to indicate the hold short point on

certain runways which are approved for Land and

Hold Short Operations (LAHSO). Land and hold

short lights consist of a row of pulsing white lights

installed across the runway at the hold short point.

Where installed, the lights will be on anytime


Page 21

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−7

Airport Lighting Aids

LAHSO is in effect. These lights will be off when

LAHSO is not in effect.

REFERENCE

AIM, Pilot Responsibilities When Conducting Land and Hold Short
Operations (LAHSO), Paragraph 4

−3−11.

2

1

6. Runway Status Light (RWSL)

System

a.

Introduction.

RWSL is a fully automated system that provides

runway status information to pilots and surface

vehicle operators to clearly indicate when it is unsafe

to enter, cross, takeoff from, or land on a runway. The

RWSL system processes information from surveil-

lance systems and activates Runway Entrance Lights

(REL), Takeoff Hold Lights (THL), Runway

Intersection Lights (RIL), and Final Approach

Runway Occupancy Signal (FAROS) in accordance

with the position and velocity of the detected surface

traffic and approach traffic. REL, THL, and RIL are

in-pavement light fixtures that are directly visible to

pilots and surface vehicle operators. FAROS alerts

arriving pilots that the approaching runway is

occupied by flashing the Precision Approach Path

Indicator (PAPI). FAROS may be implemented as an

add-on to the RWSL system or implemented as a

stand-alone system at airports without a RWSL

system. RWSL is an independent safety enhancement

that does not substitute for or convey an ATC

clearance. Clearance to enter, cross, takeoff from,

land on, or operate on a runway must still be received

from ATC. Although ATC has limited control over

the system, personnel do not directly use and may not

be able to view light fixture activations and

deactivations during the conduct of daily ATC

operations.

b.

Runway Entrance Lights (REL): The REL

system is composed of flush mounted, in-pavement,

unidirectional light fixtures that are parallel to and

focused along the taxiway centerline and directed

toward the pilot at the hold line. An array of REL

lights include the first light at the hold line followed

by a series of evenly spaced lights to the runway edge;

one additional light at the runway centerline is in line

with the last two lights before the runway edge (see

FIG 2−1−9 and FIG 2−1−12). When activated, the

red lights indicate that there is high speed traffic on

the runway or there is an aircraft on final approach

within the activation area.

1.

REL Operating Characteristics − Departing

Aircraft:

When a departing aircraft reaches a site adaptable

speed of approximately 30 knots, all taxiway

intersections with REL arrays along the runway

ahead of the aircraft will illuminate (see FIG 2−1−9).

As the aircraft approaches an REL equipped taxiway

intersection, the lights at that intersection extinguish

approximately 3 to 4 seconds before the aircraft

reaches it. This allows controllers to apply

“anticipated separation” to permit ATC to move

traffic more expeditiously without compromising

safety. After the aircraft is declared “airborne” by the

system, all REL lights associated with this runway

will extinguish.

2.

REL Operating Characteristics − Arriving

Aircraft:

When an aircraft on final approach is approximately

1 mile from the runway threshold, all sets of taxiway

REL light arrays that intersect the runway illuminate.

The distance is adjustable and can be configured for

specific operations at particular airports. Lights

extinguish at each equipped taxiway intersection

approximately 3 to 4 seconds before the aircraft

reaches it to apply anticipated separation until the

aircraft has slowed to approximately 80 knots (site

adjustable parameter). Below 80 knots, all arrays that

are not within 30 seconds of the aircraft’s forward

path are extinguished. Once the arriving aircraft

slows to approximately 34 knots (site adjustable

parameter), it is declared to be in a taxi state, and all

lights extinguish.

3.

What a pilot would observe: A pilot at or

approaching the hold line to a runway will observe

RELs illuminate and extinguish in reaction to an

aircraft or vehicle operating on the runway, or an

arriving aircraft operating less than 1 mile from the

runway threshold.

4.

When a pilot observes the red lights of the

REL, that pilot will stop at the hold line or remain

stopped. The pilot will then contact ATC for

resolution if the clearance is in conflict with the

lights. Should pilots note illuminated lights under

circumstances when remaining clear of the runway is

impractical for safety reasons (for example, aircraft

is already on the runway), the crew should proceed

according to their best judgment while understanding

the illuminated lights indicate the runway is unsafe to


Page 22

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−8

Airport Lighting Aids

enter or cross. Contact ATC at the earliest possible

opportunity.

FIG 2

−1−9

Runway Status Light System

c.

Takeoff Hold Lights (THL) : The THL system

is composed of flush mounted, in-pavement,

unidirectional light fixtures in a double longitudinal

row aligned either side of the runway centerline

lighting. Fixtures are focused toward the arrival end

of the runway at the “line up and wait” point. THLs

extend for 1,500 feet in front of the holding aircraft

starting at a point 375 feet from the departure

threshold (see FIG 2−1−13). Illuminated red lights

provide a signal, to an aircraft in position for takeoff

or rolling, that it is unsafe to takeoff because the

runway is occupied or about to be occupied by

another aircraft or ground vehicle. Two aircraft, or a

surface vehicle and an aircraft, are required for the

lights to illuminate. The departing aircraft must be in

position for takeoff or beginning takeoff roll. Another

aircraft or a surface vehicle must be on or about to

cross the runway.

1.

THL Operating Characteristics − Departing

Aircraft:

THLs will illuminate for an aircraft in position for

departure or departing when there is another aircraft

or vehicle on the runway or about to enter the runway

(see FIG 2−1−9.) Once that aircraft or vehicle exits

the runway, the THLs extinguish. A pilot may notice

lights extinguish prior to the downfield aircraft or

vehicle being completely clear of the runway but still

moving. Like RELs, THLs have an “anticipated

separation” feature.

NOTE

When the THLs extinguish, this is not clearance to begin a
takeoff roll. All takeoff clearances will be issued by ATC.

2.

What a pilot would observe: A pilot in

position to depart from a runway, or has begun takeoff

roll, will observe THLs illuminate in reaction to an

aircraft or vehicle on the runway or entering or

crossing it. Lights will extinguish when the runway is

clear. A pilot may observe several cycles of

illumination and extinguishing depending on the

amount of crossing traffic.

3.

When a pilot observes the red light of the

THLs, the pilot should safely stop if it’s feasible or

remain stopped. The pilot must contact ATC for

resolution if any clearance is in conflict with the

lights. Should pilots note illuminated lights while in

takeoff roll and under circumstances when stopping

is impractical for safety reasons, the crew should


Page 23

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−9

Airport Lighting Aids

proceed according to their best judgment while

understanding the illuminated lights indicate that

continuing the takeoff is unsafe. Contact ATC at the

earliest possible opportunity.

d.

Runway Intersection Lights (RIL): The RIL

system is composed of flush mounted, in−pavement,

unidirectional light fixtures in a double longitudinal

row aligned either side of the runway centerline

lighting in the same manner as THLs. Their

appearance to a pilot is similar to that of THLs.

Fixtures are focused toward the arrival end of the

runway, and they extend for 3,000 feet in front of an

aircraft that is approaching an intersecting runway.

They end at the Land and Hold Short Operation

(LASHO) light bar or the hold short line for the

intersecting runway.

1.

RIL Operating Characteristics − Departing

Aircraft:

RILs will illuminate for an aircraft departing or in

position to depart when there is high speed traffic

operating on the intersecting runway (see

FIG 2−1−9). Note that there must be an aircraft or

vehicle in a position to observe the RILs for them to

illuminate. Once the conflicting traffic passes

through the intersection, the RILs extinguish.

2.

RIL Operating Characteristics − Arriving

Aircraft:

RILs will illuminate for an aircraft that has landed and

is rolling out when there is high speed traffic on the

intersecting runway that is 

$5 seconds of meeting at

the intersection. Once the conflicting traffic passes

through the intersection, the RILs extinguish.

3.

What a pilot would observe: A pilot departing

or arriving will observe RILs illuminate in reaction to

the high speed traffic operation on the intersecting

runway. The lights will extinguish when that traffic

has passed through the runway intersection.

4.

Whenever a pilot observes the red light of the

RIL array, the pilot will stop before the LAHSO stop

bar or the hold line for the intersecting runway. If a

departing aircraft is already at high speed in the

takeoff roll when the RILs illuminate, it may be

impractical to stop for safety reasons. The crew

should safely operate according to their best

judgment while understanding the illuminated lights

indicate that continuing the takeoff is unsafe. Contact

ATC at the earliest possible opportunity.

e.

The Final Approach Runway Occupancy Signal

(FAROS) is communicated by flashing of the

Precision Approach Path Indicator (PAPI) (see FIG

2-1-9). When activated, the light fixtures of the PAPI

flash or pulse to indicate to the pilot on an approach

that the runway is occupied and that it may be unsafe

to land.

NOTE

FAROS is an independent automatic alerting system that
does not rely on ATC control or input.

1.

FAROS Operating Characteristics:

If an aircraft or surface vehicle occupies a FAROS

equipped runway, the PAPI(s) on that runway will

flash. The glide path indication will not be affected,

and the allotment of red and white PAPI lights

observed by the pilot on approach will not change.

The FAROS system will flash the PAPI when traffic

enters the runway and there is an aircraft on approach

and within 1.5 nautical miles of the landing threshold.

2.

What a pilot would observe: A pilot on

approach to the runway will observe the PAPI flash if

there is traffic on the runway and will notice the PAPI

ceases to flash when the traffic moves outside the

hold short lines for the runway.

3.

When a pilot observes a flashing PAPI at 500

feet above ground level (AGL), the contact height,

the pilot must look for and acquire the traffic on the

runway. At 300 feet AGL, the pilot must contact ATC

for resolution if the FAROS indication is in conflict

with the clearance. If the PAPI continues to flash, the

pilot must execute an immediate “go around” and

contact ATC at the earliest possible opportunity.

f.

Pilot Actions:

1.

When operating at airports with RWSL, pilots

will operate with the transponder “On” when

departing the gate or parking area until it is shutdown

upon arrival at the gate or parking area. This ensures

interaction with the FAA surveillance systems such

as ASDE-X which provide information to the RWSL

system.

2.

Pilots must always inform the ATCT when

they have either stopped, are verifying a landing

clearance, or are executing a go-around due to RWSL

or FAROS indication that are in conflict with ATC

instructions. Pilots must request clarification of the

taxi, takeoff, or landing clearance.

3.

Never cross over illuminated red lights.

Under normal circumstances, RWSL will confirm the


Page 24

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−10

Airport Lighting Aids

pilot’s taxi or takeoff clearance previously issued by

ATC. If RWSL indicates that it is unsafe to takeoff

from, land on, cross, or enter a runway, immediately

notify ATC of the conflict and re-confirm the

clearance.

4.

Do not proceed when lights have extin-

guished without an ATC clearance. RWSL verifies an

ATC clearance; it does not substitute for an ATC

clearance.

5.

Never land if PAPI continues to flash.

Execute a go around and notify ATC.

g.

ATC Control of RWSL System:

1.

Controllers can set in−pavement lights to one

of five (5) brightness levels to assure maximum

conspicuity under all visibility and lighting condi-

tions. REL, THL, and RIL subsystems may be

independently set.

2.

System lights can be disabled should RWSL

operations impact the efficient movement of air

traffic or contribute, in the opinion of the assigned

ATC Manager, to unsafe operations. REL, THL, RIL,

and FAROS light fixtures may be disabled separately.

Disabling of the FAROS subsystem does not

extinguish PAPI lights or impact its glide path

function. Whenever the system or a component is

disabled, a NOTAM must be issued, and the

Automatic Terminal Information System (ATIS)

must be updated.

2

1

7. Stand-Alone Final Approach

Runway Occupancy Signal (FAROS)

a.

Introduction:

The stand-alone FAROS system is a fully automated

system that provides runway occupancy status to

pilots on final approach to indicate whether it may be

unsafe to land. When an aircraft or vehicle is detected

on the runway, the Precision Approach Path Indicator

(PAPI) light fixtures flash as a signal to indicate that

the runway is occupied and that it may be unsafe to

land. The stand-alone FAROS system is activated by

localized or comprehensive sensors detecting aircraft

or ground vehicles occupying activation zones.
The stand-alone FAROS system monitors specific

areas of the runway, called activation zones, to

determine the presence of aircraft or ground vehicles

in the zone (see FIG 2−1−10). These activation zones

are defined as areas on the runway that are frequently

occupied by ground traffic during normal airport

operations and could present a hazard to landing

aircraft. Activation zones may include the full-length

departure position, the midfield departure position, a

frequently crossed intersection, or the entire runway.
Pilots can refer to the airport specific FAROS pilot

information sheet for activation zone configuration.

FIG 2

−1−10

FAROS Activation Zones

Clearance to land on a runway must be issued by Air

Traffic Control (ATC). ATC personnel have limited

control over the system and may not be able to view

the FAROS signal.


Page 25

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−11

Airport Lighting Aids

b.

Operating Characteristics:

If an aircraft or ground vehicle occupies an activation

zone on the runway, the PAPI light fixtures on that

runway will flash. The glide path indication is not

affected, i.e. the configuration of red and white PAPI

lights observed by the pilot on approach does not

change. The stand-alone FAROS system flashes the

PAPI lights when traffic occupies an activation zone

whether or not there is an aircraft on approach.

c.

Pilot Observations:

A pilot on approach to the runway observes the PAPI

lights flashing if there is traffic on the runway

activation zones and notices the PAPI lights cease to

flash when the traffic moves outside the activation

zones.

A pilot on departure from the runway should

disregard any observations of flashing PAPI lights.

d.

Pilot Actions:

When a pilot observes a flashing PAPI at 500 feet

above ground level (AGL), the pilot must look for and

attempt to acquire the traffic on the runway. At 300

feet AGL, the pilot must contact ATC for resolution

if the FAROS indication is in conflict with the

clearance (see FIG 2−1−11). If the PAPI lights

continue to flash and the pilot cannot visually

determine that it is safe to land, the pilot must execute

an immediate “go around”. As with operations at

non-FAROS airports, it is always the pilot’s

responsibility to determine whether or not it is safe to

continue with the approach and to land on the runway.

FIG 2

−1−11

FAROS Glide Slope Action Points

Pilots should inform the ATCT when they have

executed a go around due to a FAROS indication that

is in conflict with ATC instructions.

NOTE

At this time, the stand-alone FAROS system is not widely
implemented and is used for evaluation purposes.

2

1

8. Control of Lighting Systems

a.

Operation of approach light systems and

runway lighting is controlled by the control tower

(ATCT). At some locations the FSS may control the

lights where there is no control tower in operation.

b.

Pilots may request that lights be turned on or off.

Runway edge lights, in−pavement lights and

approach lights also have intensity controls which

may be varied to meet the pilots request. Sequenced

flashing lights (SFL) may be turned on and off. Some

sequenced flashing light systems also have intensity

control.

2

1

9. Pilot Control of Airport Lighting

Radio control of lighting is available at selected

airports to provide airborne control of lights by

keying the aircraft’s microphone. Control of lighting

systems is often available at locations without

specified hours for lighting and where there is no

control tower or FSS or when the tower or FSS is

closed (locations with a part−time tower or FSS) or

specified hours. All lighting systems which are radio

controlled at an airport, whether on a single runway

or multiple runways, operate on the same radio

frequency. (See TBL 2−1−1 and TBL 2−1−2.)


Page 26

What does Unrel indicate in the following GPS and WAAS notam?

AIM

4/3/14

2−1−12

Airport Lighting Aids

FIG 2

−1−12

Runway Entrance Lights

FIG 2

−1−13

Takeoff Hold Lights