Major depression is associated with the lack of which two neurotransmitters?

  1. World Health Organization 2017. http://who.int/mediacentre/factsheets/fs369/en/.

  2. Cipriani, A. et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: a network meta-analysis. Lancet 388, 881–890 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Yang, Y. et al. The extrinsic coagulation pathway: a biomarker for suicidal behavior in major depressive disorder. Sci. Rep. 6, 32882 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fava, M. Diagnosis and definition of treatment-resistant depression. Biol. Psychiatry 53, 649–659 (2003).

    Article  PubMed  Google Scholar 

  5. Zheng, P. et al. Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J. Affect Disord. 195, 75–81 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Strawbridge, R., Young, A. H. & Cleare, A. J. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr. Dis. Treat. 13, 1245–1262 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rotroff, D. M. et al. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl. Psychiatry 6, e894 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rzezniczek, S. et al. Decreased sensitivity to paroxetine-induced inhibition of peripheral blood mononuclear cell growth in depressed and antidepressant treatment-resistant patients. Transl. Psychiatry 6, e827 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786–796 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Pan, J. et al. Ipsilateral hippocampal proteomics reveals mitochondrial antioxidative stress impairment in cortical-lesioned chronic mild stressed rats. Curr. Mol. Med. 14, 1186–1196 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Zheng, P. et al. Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol. Cell. Proteom.: MCP 12, 207–214 (2013).

    Article  CAS  Google Scholar 

  12. Zheng, P. et al. A novel urinary metabolite signature for diagnosing major depressive disorder. J. Proteome Res. 12, 5904–5911 (2013).

    Article  PubMed  CAS  Google Scholar 

  13. Xu, H. B. et al. Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation. Int. J. Neuropsychopharmacol. 15, 1413–1425 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Mu, J. et al. Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci. Lett. 416, 252–256 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Xu, F. et al. Macaques exhibit a naturally-occurring depression similar to humans. Sci. Rep. 5, 9220 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Weckmann, K., Labermaier, C., Asara, J. M., Muller, M. B. & Turck, C. W. Time-dependent metabolomic profiling of Ketamine drug action reveals hippocampal pathway alterations and biomarker candidates. Transl. Psychiatry 4, e481 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nutt, D. J. et al. Consensus statement and research needs: the role of dopamine and norepinephrine in depression and antidepressant treatment. J. Clin. Psychiatry 67(Suppl 6), 46–49 (2006).

    PubMed  Google Scholar 

  18. Milak, M. S. et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol. Psychiatry 21, 320–327 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Rajkowska, G. & Stockmeier, C. A. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr. Drug. Targets 14, 1225–1236 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Paterson, R. W. et al. Cerebrospinal fluid markers including trefoil factor 3 are associated with neurodegeneration in amyloid-positive individuals. Transl. Psychiatry 4, e419 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wiers, C. E. et al. Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism. Transl. Psychiatry 5, e648 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Voyle, N. et al. Blood metabolite markers of neocortical amyloid-beta burden: discovery and enrichment using candidate proteins. Transl. Psychiatry 6, e719 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yamagata, H. et al. Altered plasma protein glycosylation in a mouse model of depression and in patients with major depression. J. Affect Disord. 233, 79–85 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. Ren, J. et al. Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology 86, 17–24 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Liu, M. L. et al. Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomic study. J. Transl. Med. 13, 226 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, W. et al. Targeted metabolomic pathway analysis and validation revealed glutamatergic disorder in the prefrontal cortex among the chronic social defeat stress mice model of depression. J. Proteome Res. 15, 3784–3792 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Xia, J. & Wishart, D. S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinforma. 55, 14.10. 11–14.10.91 (2016).

    Article  Google Scholar 

  28. Park, M., Pyun, J. C., Akter, H., Nguyen, B. T. & Kang, M. J. Evaluation of a specific diagnostic marker for rheumatoid arthritis based on cyclic citrullinated peptide. J. Pharm. Biomed. Anal. 115, 107–113 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Gong, Q. et al. Network-level dysconnectivity in drug-naive first-episode psychosis: dissociating transdiagnostic and diagnosis-specific alterations. Neuropsychopharmacology 42, 933–940 (2017).

  30. Gibson, J. et al. Assessing the presence of shared genetic architecture between Alzheimer’s disease and major depressive disorder using genome-wide association data. Transl. Psychiatry 7, e1094 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hirschfeld, R. M. Differential diagnosis of bipolar disorder and major depressive disorder. J. Affect Disord. 169(Suppl 1), S12–S16 (2014).

    Article  PubMed  Google Scholar 

  32. Lasalvia, A. et al. Global pattern of experienced and anticipated discrimination reported by people with major depressive disorder: a cross-sectional survey. Lancet (Lond., Engl.) 381, 55–62 (2013).

    Article  Google Scholar 

  33. Gadad, B. S. et al. Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J. Affect Disord. 233, 3–14 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Milaneschi, Y. et al. Polygenic dissection of major depression clinical heterogeneity. Mol. Psychiatry 21, 516–522 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Leuchter, A. F., Hunter, A. M., Krantz, D. E. & Cook, I. A. Intermediate phenotypes and biomarkers of treatment outcome in major depressive disorder. Dialog-. Clin. Neurosci. 16, 525–537 (2014).

    Google Scholar 

  36. Helton, S. G. & Lohoff, F. W. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics 16, 541–553 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Kato, T. A. et al. Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry. Curr. Med. Chem. 20, 331–344 (2013).

    PubMed  CAS  Google Scholar 

  38. Zhou, X. et al. Metabolomics identifies perturbations in amino acid metabolism in the prefrontal cortex of the learned helplessness rat model of depression. Neuroscience 343, 1–9 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Wang, L. et al. Serotonin-1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry 16, 319 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhou J. et al. Quantitative proteomic analysis reveals molecular adaptations in the hippocampal synaptic active zone of chronic mild stress-unsusceptible rats. Int. J. Neuropsychopharmacol. 19 (2015) doi: 10.1093/ijnp/pyv100.

  41. Wu, Y. et al. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav. Brain. Res. 308, 115–127 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Liu, L. et al. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav. Brain. Res. 305, 148–156 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Mota, R. et al. Interleukin-1beta is associated with depressive episode in major depression but not in bipolar disorder. J. Psychiatr. Res. 47, 2011–2014 (2013).

    Article  PubMed  Google Scholar 

  44. Motovsky, B. & Pecenak, J. Psychopathological characteristics of bipolar and unipolar depression - potential indicators of bipolarity. Psychiatr. Danub. 25, 34–39 (2013).

    PubMed  Google Scholar 

  45. Cardoso de Almeida, J. R. & Phillips, M. L. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives. Biol. Psychiatry 73, 111–118 (2013).

    Article  PubMed  Google Scholar 

  46. Zheng, P. et al. Identification of sex-specific urinary biomarkers for major depressive disorder by combined application of NMR- and GC-MS-based metabonomics. Transl. Psychiatry 6, e955 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zheng, P. et al. Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J. Proteome Res. 11, 1741–1748 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Xu, H. B. et al. Potential clinical utility of plasma amino acid profiling in the detection of major depressive disorder. Psychiatry Res. 200, 1054–1057 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Wu, D. et al. Identification and validation of argininosuccinate synthase as a candidate urinary biomarker for major depressive disorder. Clin. Chim. Acta 451, 142–148 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Song, Y. R. et al. Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder. Braz. J. Med. Biol. Res.=Rev. Bras. De. Pesqui. Med. e Biol. / Soc. Bras. De. Biofisica [Et. al] 48, 973–982 (2015).

    CAS  Google Scholar 

  51. Xu, X. J. et al. 2,4-Dihydroxypyrimidine is a potential urinary metabolite biomarker for diagnosing bipolar disorder. Mol. Biosyst. 10, 813–819 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Chen, J. J. et al. Combined application of NMR- and GC-MS-based metabonomics yields a superior urinary biomarker panel for bipolar disorder. Sci. Rep. 4, 5855 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chen, J. J. et al. Sex-specific urinary biomarkers for diagnosing bipolar disorder. PLoS. One. 9, e115221 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pehrson, A. L. & Sanchez, C. Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Dev. Ther. 9, 603–624 (2015).

    Article  CAS  Google Scholar 

  55. Taylor, S. F., Demeter, E., Phan, K. L., Tso, I. F. & Welsh, R. C. Abnormal GABAergic function and negative affect in schizophrenia. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 39, 1000–1008 (2014).

    Article  CAS  Google Scholar 

  56. Rudenko, A. et al. Loss of cyclin-dependent kinase 5 from parvalbumin interneurons leads to hyperinhibition, decreased anxiety, and memory impairment. J. Neurosci.: Off. J. Soc. Neurosci. 35, 2372–2383 (2015).

    Article  CAS  Google Scholar 

  57. Shabel, S. J., Proulx, C. D., Piriz, J. & Malinow, R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Sci. (New Y., NY) ; 345, 1494–1498 (2014).

    Article  CAS  Google Scholar 

  58. Setoyama, D. et al. Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients—a multicenter pilot analysis. PLoS. One. 11, e0165267 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mann, J. J. et al. Anxiety in major depression and cerebrospinal fluid free gamma-aminobutyric acid. Depress Anxiety 31, 814–821 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Abdallah, C. G. et al. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur. Neuropsychopharmacol.: J. Eur. Coll. Neuropsychopharmacol. 25, 1082–1090 (2015).

    Article  CAS  Google Scholar 

  61. Petty, F. GABA and mood disorders: a brief review and hypothesis. J. Affect Disord. 34, 275–281 (1995).

    Article  PubMed  CAS  Google Scholar 

  62. Kunugi, H., Hori, H. & Ogawa, S. Biochemical markers subtyping major depressive disorder. Psychiatry Clin. Neurosci. 69, 597–608 (2015).

    Article  PubMed  Google Scholar 

  63. Zhao, L. et al. In vivo study on the neurotransmitters and their metabolites change in depressive disorder rat plasma by ultra high performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B. Anal. Technol. Biomed. Life. Sci. 988, 59–65 (2015).

    Article  CAS  Google Scholar 

  64. Lake, C. R. et al. High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry 139, 1315–1318 (1982).

    Article  PubMed  CAS  Google Scholar 

  65. Klempan, T. A. et al. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol. Psychiatry 14, 175–189 (2009).

    Article  PubMed  CAS  Google Scholar 

  66. Fakhoury, M. Revisiting the serotonin hypothesis: implications for major depressive disorders. Mol. Neurobiol. 53, 2778–2786 (2016).

    Article  PubMed  CAS  Google Scholar 

  67. Weng, R. et al. Metabolomics approach reveals integrated metabolic network associated with serotonin deficiency. Sci. Rep. 5, 11864 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Havelund, J. F., Andersen, A. D. Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J. Neurochem. 142, 756–766 (2017).


Page 2

Variables Cohort 1 Cohort 2
  HC MDD Pa HC MDD BD Pa
Sample size 50 50 40 49 30
Sex (M/F) 25/25 24/26 0.841 22/18 23/26 13/17 0.593
Age (years) b 36.9±1.3 38.3±1.6 0.503 36.8±1.6 37.7±1.7 35.8±10.7 0.249
BMIb 22.4±0.73 22.0±0.39 0.553 21.7±0.7 22.5±0.7 22.4±3.4 0.264
HDRS scores 0.4±0.1 24.6±0.5 <0.01 0.3±0.1 23.3±0.5 16.7±10.5 <0.01
BD-I 18
BD-II 12
Course (Month) 17.4±2.2 41.6±9.8 64.9±15.1
Medication (Y/N) N N 38/11 19/11
SSRI(Y/N) N N N 29/20 10/20
SNRI (Y/N) N N N 9/40 N
Mood stabilizers (Y/N) N N N N 5/25
Atypical antipsychotics(Y/N) N N N N 4/26

  1. HC healthy controls, MDD major depressive disorder, BD bipolar disorder, Y/N Yes/No, M/F male/female, HDRS Hamilton depression rating scale, BMI body mass index, SSRI selective serotonin reuptake inhibitors, SNRI serotonin noradrenalin reuptake inhibitors
  2. a Two-tailed Student’s test or one-way ANOVA for continuous variables (age, BMI, and HDRS scores); Chi-square analysis was used for categorical variables (sex)
  3. b Values were expressed as mean ± SEM