According to a large study, the ability to cope successfully with change was most closely related to

1. Letourneau C. Physiologie des passions. 2nd ed. Paris, France: C. Reinwald &Cie; 1878 [Google Scholar]

2. Davidson JR. Affective style, mood and anxiety disorders. An affective neuroscience approach. In: Davidson JR, ed. Anxiety Depression and Emotions. Oxford, UK: Oxford University Press; 2000:88–108. [Google Scholar]

3. Strongman KT. The Psychology of Emotion. Theories of Emotion in Perspective. Chichester, UK: John Wiley & sons; 1996 [Google Scholar]

4. Ekman P., Davidson RJ (eds). The Nature of Emotion. Oxford, UK: Oxford University Press; 1994 [Google Scholar]

5. Panksepp J. Affective Neuroscience. New York, NY: Oxford University Press; 1998 [Google Scholar]

6. Borod JC (ed). The Neuropsychology of Emotion. Oxford, UK: Oxford University Press; 2000 [Google Scholar]

7. Davidson JR (ed). Anxiety Depression, and Emotion. Oxford, UK: Oxford University Press; 2000 [Google Scholar]

8. Lewis M., Haviland-Jones JM (eds). Handbook of Emotions. New York, NY: The Guilford Press; 2000 [Google Scholar]

9. Cannon WB. The James-Lange theory of emotions: a critical examination and an alternative theory. By Walter B. Cannon, 1927. Am J Psychol. 1987;100:567–586. [PubMed] [Google Scholar]

10. Watson JB. Behaviorism. 7th ed. New York, NY: WW Norton & Company; 1970 [Google Scholar]

11. Ortony A., Turner TJ. What's basic about basic emotions? Psychol Rev. 1990;97:315–331. [PubMed] [Google Scholar]

12. Ekman P. Are there basic emotions? Psychol Rev. 1992;99:550–553. [PubMed] [Google Scholar]

13. Panksepp J. A critical role for “affective neuroscience” in resolving what is basic about basic emotions. Psychol Rev. 1992;99:554–560. [PubMed] [Google Scholar]

14. McFarland D. The Oxford Companion to Animal Behaviour. Oxford, UK: Oxford University Press; 1987 [Google Scholar]

15. Craig KJ., Brown KJ., Baum A. Environmental factors in the etiology of anxiety. In: Bloom FE, Kupfer DJ, eds. Psychopharmacology: the Fourth Generation of Progress. New York, NY: Raven Press; 1995:1325–1339. [Google Scholar]

16. Barlow DH. Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. Am Psychol. 2000;55:1247–1263. [PubMed] [Google Scholar]

17. Cannon WB. Bodily Changes in Pain, Hunger, Fear and Rage. New York, NY: Appleton; 1915 [Google Scholar]

18. Engel GL., Schmale AH. Conservation withdrawal: a primary regulatory process for organic homeostasis. In: Physiology, Emotions and Psychosomatic Illness. New York, NY: Elsevier; 1972:57–95. [Google Scholar]

19. Henry JP., Stephens PM. Health and the Social Environment: a Sociobiological Approach to Medicine. Berlin, Germany: Springer; 1997 [Google Scholar]

20. Keay KA., Bandler R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev. 2001;25:669–678. [PubMed] [Google Scholar]

21. Bandler R., Price JL., Keay KA. Brain mediation of active and passive emotional coping. In: Mayer EA, Sapers CB, eds. Progress in Brain Research. Vol 122. Amsterdam, The Netherlands: Elsevier Science BV; 2000:333–349. [PubMed] [Google Scholar]

22. Panksepp J. The psychoneurology of fear: evolutionary perspectives and the role of animal models in understanding human anxiety. In: Burrows GD, Roth M, Noyes Jr R, eds. Handbook of Anxiety. Volume 3. The Neurobiology of Anxiety. Amsterdam, The Netherlands: Elsevier Science BV; 1990:3–58. [Google Scholar]

23. Bakshi VP., Shelton SE., Kalin NH. Neurobiological correlates of defensive behaviors. In: Mayer EA, Sapers CB, eds. Progress in Brain Research. Vol 122. Amsterdam, The Netherlands: Elsevier Science BV; 2000:105–115. [PubMed] [Google Scholar]

24. Blanchard DC., Hynd AL., Minke KA., Monemoto T., Blanchard RJ. Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of non-human mammals. Neurosci Biobehav Rev. 2001;25:761–770. [PubMed] [Google Scholar]

25. Kavaliers M., Choleris E. Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci Biobehav Rev. 2001;25:577–586. [PubMed] [Google Scholar]

26. Koolhaas JM., Korte SM., De Boer SF., et al. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev. 1999;23:925–935. [PubMed] [Google Scholar]

27. Parmigiani S., Palanza P., Rodgers J., Ferrari PF. Selection, evolution of behavior and animal models in behavioral neuroscience. Neurosci Biobehav Rev. 1999;23:957–970. [PubMed] [Google Scholar]

28. Steimer T., Driscoll P., Schulz P. Brain metabolism of progesterone, coping behaviour and emotional reactivity in male rats from two psychogenetically selected lines. J Neuroendocrinol. 1997;9:169–175. [PubMed] [Google Scholar]

29. Perrez M., Reichert M. Stress, Coping, and Health. Seattle, Wash: Hogrefe & Huber Publishers; 1992 [Google Scholar]

30. Van Egeren L. Stress and coping and behavioral organization. Psychosom Med. 2000;62:451–460. [PubMed] [Google Scholar]

31. Pavlov I. Oeuvres choisies. Moscow, Russia: Editions en langues étrangères; 1954:250–251. [Google Scholar]

32. Cosnier J. Les névroses expérimentales. Paris, France: Editions du Seuil; 1966 [Google Scholar]

33. Gottesman II. Schizophrenia Genesis: The Origins of Madness. New York, NY: WH Freeman and Co; 1991 [Google Scholar]

34. Goldsmith HH., Lemery KS. Linking temperamental fearfulness and anxiety symptoms: a behavior-genetic perspective. Biol Psychiatry. 2000;48:1199–1209. [PubMed] [Google Scholar]

35. Kandel ER. From metapsychology to molecular biology: explorations into the nature of anxiety. Am J Psychiatry. 1983;140:1277–1293. [PubMed] [Google Scholar]

36. Lister RG. Ethologically based animal models of anxiety disorders. Pharmacol Ther. 1990;46:321–340. [PubMed] [Google Scholar]

37. Shekhar A., McCann UD., Meaney MJ., et al. Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl). 2001;157:327–339. [PubMed] [Google Scholar]

38. Belzung C., Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001;125:141–149. [PubMed] [Google Scholar]

39. Tarantino ML., Bucan M. Dissection of behavior and psychiatric disorders using the mouse as a model. Hum Mol Genet. 2000;9:953–965. [PubMed] [Google Scholar]

40. Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 2002;855:18–26. [PubMed] [Google Scholar]

41. Panksepp J. The sources of fear and anxiety in the brain. In: Panksepp J, ed. Affective Neuroscience. New York, NY: Oxford University Press; 1998:206–222. [Google Scholar]

42. Coplan JD., Rosenblum LA., Gorman JM. Primate models of anxiety. Longitudinal perspectives. Psychiatr Clin North Am. 1995;18:727–743. [PubMed] [Google Scholar]

43. LeDoux J. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–184. [PubMed] [Google Scholar]

44. Jr Redmond DE., Huang YH. Current concepts. II. New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sci. 1979;25:2149–2162. [PubMed] [Google Scholar]

45. Southwick SM., Bremner JD., Rasmusson A., Morgan CA III., Arnsten A., Charney DS. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry. 1999;46:1192–1204. [PubMed] [Google Scholar]

46. Aston-Jones G., Rajkowski J., Cohen J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry. 1999;46:1309–1320. [PubMed] [Google Scholar]

47. Ziegler DR., Cass WA., Herman JP. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol. 1999;11:361–369. [PubMed] [Google Scholar]

48. Sullivan GM., Coplan JD., Kent JM., Gorman JM. The noradrenergic system in pathological anxiety: a focus on panic with relevance to generalized anxiety and phobias. Biol Psychiatry. 1999;46:1205–1218. [PubMed] [Google Scholar]

49. Gray JA. The structure of the emotions and the limbic system. In: Physiology, Emotions and Psychosomatic Illness. Amsterdam, The Netherlands: Elsevier; 1972:87–129. [Google Scholar]

50. Gray JA. Three fundamental emotion systems. In: Ekman P, Davidson JR, eds. The Nature of Emotion. New York, NY: Oxford University Press; 1994:243–247. [Google Scholar]

51. Gray JA. The Neuropsychology of Anxiety. An Enquiry into the Functions of the Septo-hippocampal System. Oxford, UK: Clarendon Press; 1987 [Google Scholar]

52. Laborit H. Inhibition of action: interdisciplinary approach to its mechanisms and pathophysiology. In: Traue HC, Pennebaker JW, eds. Emotion, Inhibition and Health. Seattle, Wash: Hogrefe & Huber Publishers; 1993:57–79. [Google Scholar]

53. Selye H. The Stress of Life. 2nd revised paperback ed. New York, NY: McGraw Hill; 1984 [Google Scholar]

54. Vianna DML., Landeira-Fernadez J., Brandão ML. Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev. 2001;25:711–719. [PubMed] [Google Scholar]

55. Coplan JD., Lydiard RB. Brain circuits in panic disorder. Biol Psychiatry. 1998;44:1264–1276. [PubMed] [Google Scholar]

56. Goddard AW., Charney DS. Toward an integrated neurobiology of panic disorder. J Clin Psychiatry. 1997;58(suppl 2):4–11. [PubMed] [Google Scholar]

57. LeDoux J. Fear and the brain: where have we been, and where are we going? Biol Psychiatry. 1998;44:1229–1238. [PubMed] [Google Scholar]

58. LeDoux J. The Emotional Brain. New York, NY: Simon & Schuster; 1998 [Google Scholar]

59. LeDoux J. The amygdala and emotion: a view through fear. In: Aggleton JP, ed. The Amygdala. Oxford, UK: Oxford University Press; 2000:289–310. [Google Scholar]

60. Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci. 2001;24:897–931. [PubMed] [Google Scholar]

61. Fendt M., Fanselow MS. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev. 1999;23:743–760. [PubMed] [Google Scholar]

62. Phelps EA., O'Connor KJ., Gatenby JC., Gore JC., Grillon C., Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci. 2002;4:437–441. [PubMed] [Google Scholar]

63. Killgore WDS., Yurgelun-Todd DA. Sex differences in amygdala activation during the perception of facial affect. Neuroreport. 2001;12:2543–2547. [PubMed] [Google Scholar]

64. Davis M. The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP, ed. The Amygdala. Oxford, UK: Oxford University Press; 2000:213–287. [Google Scholar]

65. Holahan MR., White NM. Conditioned memory modulation, freezing, and avoidance as measures of amygdala-mediated conditioned fear. Neurobiol Learn Mem. 2002;77:250–275. [PubMed] [Google Scholar]

66. Killcross S., Robbins TW., Everitt BJ. Different types of fear-conditioned behaviour mediated by separate nuclei within the amygdala. Nature. 1997;388:377–380. [PubMed] [Google Scholar]

67. Goldstein LE., Rasmusson AM., Bunney BS., Roth RH. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 1996;16:4787–4798. [PMC free article] [PubMed] [Google Scholar]

68. Holland PC., Gallagher M. Amygdala circuitry in attentional and representational processes. Trends Cogn Sci. 1999;3:65–73. [PubMed] [Google Scholar]

69. Garavan H., Pendergrass JC., Ross TJ., Stein EA., Risinger RC. Amygdala response to both positively and negatively valenced stimuli. Neuroreport. 2001;12:2779–2783. [PubMed] [Google Scholar]

70. Amaral DG. The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol Psychiatry. 2002;51:11–17. [PubMed] [Google Scholar]

71. File S., Gonzalez LE., Gallants R. Role of the basolateral nucleus of the amygdala in the formation of a phobia. Neuropsychopharmacology. 1998;19:397–405. [PubMed] [Google Scholar]

72. Davis M., Walker DL., Lee Y. Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci. 1997;821:305–331. [PubMed] [Google Scholar]

73. Davis M. Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry. 1998;44:1239–1247. [PubMed] [Google Scholar]

74. Treit D., Pesold C., Rotzinger S. Dissociating the anti-fear effects of septal and amygdaloid lesions using two pharmacologically validated models of rat anxiety. Behav Neurosci. 1993;105:770–785. [PubMed] [Google Scholar]

75. Treit D., Pesold C., Rotzinger S. Noninteractive effects of diazepam and amygdaloid lesions in two animal models of anxiety. Behav Neurosci. 1993;107:1099–1105. [PubMed] [Google Scholar]

76. Kalin NH., Shelton SE., Davidson RJ., Kelley AE. The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. J Neurosci. 2001;21:2067–2074. [PMC free article] [PubMed] [Google Scholar]

77. Aggleton JP. The Amygdala. A Functional Analysis. 2nd ed. Oxford, UK: Oxford University Press; 2000 [Google Scholar]

78. Herman JP., Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20:78–84. [PubMed] [Google Scholar]

79. Lopez JF., Akil H., Watson SJ. Neural circuits mediating stress. Biol Psychiatry. 1999;46:1461–1471. [PubMed] [Google Scholar]

80. Davidson RJ., Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3:11–21. [PubMed] [Google Scholar]

81. Davidson RJ. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51:68–80. [PubMed] [Google Scholar]

82. Gainotti G., Caltagirone C. Emotions and the Dual Brain. Berlin, Germany: Springer-Verlag; 1989 [Google Scholar]

83. Sullivan RM., Gratton A. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res. 2002;927:69–79. [PubMed] [Google Scholar]

84. Tanaka M., Yoshida M., Emoto H., Ishii H. Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol. 2000;405:397–406. [PubMed] [Google Scholar]

85. Shishkina GT., Kalinina TS., Sournina NY., Saharov DG., Kobzev VF., Dygalo NN. Effects of antisense oligodeoxynucleotide to the alpha2A-adrenoceptors on the plasma corticosterone level and on elevated plus-maze behavior in rats. Psychoneuroendocrinology. 2002;27:593–601. [PubMed] [Google Scholar]

86. Schramm NL., McDonald MP., Limbird LE. The <x2A-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci. 2001;21:4875–4882. [PMC free article] [PubMed] [Google Scholar]

87. Bagdy G. Serotonin, anxiety, and stress hormones. Focus on 5-HT receptor subtypes, species and gender differences. Ann N Y Acad Sci. 1998;851:357–363. [PubMed] [Google Scholar]

88. Graeff FG., Viana MB., Mora PO. Dual role of 5-HT in defense and anxiety. Neurosci Biobehav Rev. 1997;21:791–799. [PubMed] [Google Scholar]

89. Graeff FG., Guimaraes FS., De Andrade TG., Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav. 1996;54:129–141. [PubMed] [Google Scholar]

90. Gingrich JA., Hen R. Dissecting the role of the serotonin system in neuropsychiatrie disorders using knockout mice. Psychopharmacology (Berl). 2001;155:1–10. [PubMed] [Google Scholar]

91. Olivier B., Pattij T., Wood SJ., Oosting R., Sarnyai Z., Toth M. The 5-HT(1A) receptor knockout mouse and anxiety. Behav Pharmacol. 2001;12:439–450. [PubMed] [Google Scholar]

92. Pattij T., Groenink L., Hijzen TH., et al. Autonomic changes associated with enhanced anxiety in 5-HT1A receptor knockout mice. Neuropsychopharmacology. 2002;27:380. [PubMed] [Google Scholar]

93. Zhuang X., Gross C., Santarelli L., Compan V., Trillat AC., Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology. 1999;21(2, suppl):52S–60S. [PubMed] [Google Scholar]

94. Murphy DL., Li Q., Engel S., et al. Genetic perspectives on the serotonin transporter. Brain Res Bull. 2001;56:487–494. [PubMed] [Google Scholar]

95. Nutt DJ., Malizia AL. New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry. 2001;179:390–396. [PubMed] [Google Scholar]

96. Möhler H., Crestani F., Rudolph U. GABAA-receptor subtypes: a new pharmacology. Curr Opin Pharmacol. 2002;1:22–25. [PubMed] [Google Scholar]

97. Möhler H., Fritschy JM., Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther. 2002;300:2–8. [PubMed] [Google Scholar]

98. Rudolph U., Crestani F., Möhler H. GABAA receptors subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci. 2001;22:188–194. [PubMed] [Google Scholar]

99. Löw K., Crestani F., Keist R., et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science. 2000;290:131–134. [PubMed] [Google Scholar]

100. Crestani F., Lorez M., Baer K., et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci. 1999;2:833–839. [PubMed] [Google Scholar]

101. Bailey DJ., Tezlaff JE., Cook JM., He X., Helmstetter FJ. Effects of hippocampal injections of a novel ligand selective for the α5β2γ2 subunits of the GABA/benzodiazepine receptor on Pavlovian conditioning. Neurobiol Learn Mem. 2002;78:1–10. [PubMed] [Google Scholar]

102. Compagnone NA., Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol. 2002;21:1–56. [PubMed] [Google Scholar]

103. Rupprecht R., di Michele F., Hermann B., et al. Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res Brain Res Rev. 2001;37:59–67. [PubMed] [Google Scholar]

104. Majewska MD. Steroids and brain activity. Essential dialogue between body and mind. Biochem Pharmacol. 1987;36:3781–3788. [PubMed] [Google Scholar]

105. Costa E., Cheney DL., Grayson DR., et al. Pharmacology of neurosteroid biosynthesis. Role of the mitochondrial DBI receptor (MDR) complex. Ann N Y Acad Sci. 1994;746:223–242. [PubMed] [Google Scholar]

106. Costa E., Auta J., Guidotti A., Korneyev A., Romeo E. The pharmacology of neurosteroidogenesis. J Steroid Biochem Mol Biol. 1994;49:385–389. [PubMed] [Google Scholar]

107. Dunn AJ., Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev. 1990;15:71–100. [PubMed] [Google Scholar]

108. Arborelius L., Owens MJ., Plotsky PM., Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol. 1999;160:1–12. [PubMed] [Google Scholar]

109. Smagin GN., Heinrichs SC., Dunn AJ. The role of CRH in behavioral responses to stress. Peptides. 2001;22:713–724. [PubMed] [Google Scholar]

110. Schulkin J., Gold PW., McEwen BS. Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology. 1998;23:219–243. [PubMed] [Google Scholar]

111. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46:1167–1180. [PubMed] [Google Scholar]

112. Heinrichs SC., Joppa M. Dissociation of arousal-like from anxiogeniclike actions of brain corticotropin-releasing factor receptor ligands in rats. Behav Brain Res. 2001;122:43–50. [PubMed] [Google Scholar]

113. Stenzel-Poore MP., Heinrichs SC., Rivest S., Koob GF., Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci. 1994;14:2579–2584. [PMC free article] [PubMed] [Google Scholar]

114. Bakshi VP., Kalin NH. Corticotropin-releasing hormone and animal models of anxiety: gene-environment interactions. Biol Psychiatry. 2000;48:1175–1198. [PubMed] [Google Scholar]

115. Coste SC., Murray SE., Stenzel-Poore MP. Animal models of CRH excess and CRH receptor deficiency display altered adaptations to stress. Peptides. 2001;22:733–741. [PubMed] [Google Scholar]

116. van Gaalen MM., Reul JHM., Gesing A., Stenzel-Poore M., Holsboer F., Steckler T. Mice overexpressing CRH show reduced responsiveness in plasma corticosterone after a 5-HT1A receptor challenge. Genes Brain Behav. 2002;1:174–177. [PubMed] [Google Scholar]

117. Dirks A., Groenink L., Schipholt Ml., et al. Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol Psychiatry. 2002;51:583–590. [PubMed] [Google Scholar]

118. Muglia LJ., Jacobson L., Weninger SC., Karalis KP., Jeong K., Majzoub JA. The physiology of corticotropin-releasing hormone deficiency in mice. Peptides. 2001;22:725–731. [PubMed] [Google Scholar]

119. Dunn AJ., Swiergiel AH. Behavioral responses to stress are intact in CRF-deficient mice. Brain Res. 1999;845:14–20. [PubMed] [Google Scholar]

120. Weninger SC., Dunn AJ., Muglia LJ., et al. Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA. 1999;96:8283–8288. [PMC free article] [PubMed] [Google Scholar]

121. Sleekler T., Holsboer F. Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry. 1999;46:1480–1508. [PubMed] [Google Scholar]

122. Holmes A. Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev. 2001;25:261–273. [PubMed] [Google Scholar]

123. Takahashi LK. Role of CRF1 and CRF2 receptors in fear and anxiety. Neurosci Biobehav Rev. 2002;25:627–636. [PubMed] [Google Scholar]

124. Reul JM., Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol. 2002;2:23–33. [PubMed] [Google Scholar]

125. Smith GW., Aubry JM., Dellu F., et al. Corticotropin-releasing factor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron. 1998;20:1093–1102. [PubMed] [Google Scholar]

126. Kishimoto T., Radulovic J., Radulovic M., et al. Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone recptor-2. Nat Genet. 2000;24:415–419. [PubMed] [Google Scholar]

127. Bale TL., Picetti R., Contarino A., Koob GF., Vale WW., Lee KF. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci. 2002;22:193–199. [PMC free article] [PubMed] [Google Scholar]

128. Kemp CF., Woods RJ., Lowry PJ. The corticotropin-releasing factor-binding protein: an act of several parts. Peptides. 1998;19:1119–1128. [PubMed] [Google Scholar]

129. Seasholtz AF., Burrows HL., Karolyi IJ., Camper SA. Mouse models of altered CRH-binding protein expression. Peptides. 2001;22:743–751. [PubMed] [Google Scholar]

130. Sapolsky RM., Krey LC., McEwen BS. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci U S A. 1984;81:6174–6177. [PMC free article] [PubMed] [Google Scholar]

131. Liberzon I., López JF., Flagel SB., Vázquez DM., Young EA. Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol. 1999;11:11–17. [PubMed] [Google Scholar]

132. Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev. 2001;25:117–142. [PubMed] [Google Scholar]

133. Gass P., Reichardt HM., Strekalova T., Henn F., Tronche F. Mice with targeted mutations of glucocorticoid and mineralocorticoid receptors: models for depression and anxiety? Physiol Behav. 2001;73:811–825. [PubMed] [Google Scholar]

134. Griebel G. Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther. 1999;82:1–61. [PubMed] [Google Scholar]

135. van Megen HJ., Westenberg HG., den Boer JA., Kahn RS. Cholecystokinin in anxiety. Eur Neuropsychopharmacol. 1996;6:263–280. [PubMed] [Google Scholar]

136. Rehfeld JF. Cholecystokinin and panic disorder - three unsettled questions. Regul Pept. 2000;93:79–83. [PubMed] [Google Scholar]

137. Dauge V., Lena I. CCK in anxiety and cognitive processes. Neurosci Biobehav Rev. 1998;22:815–825. [PubMed] [Google Scholar]

138. De Oliveira RMW., Del Bel EA., Guimarães FS. Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the periaqueductal gray. Neurosci Biobehav Rev. 2001;25:679–685. [PubMed] [Google Scholar]

139. Schulz P., Walker JP., Peyrin L., Soulier V., Curtin F., Steimer T. Lower sex hormones in men during anticipatory stress. Neuroreport. 1996;7:3101–3104. [PubMed] [Google Scholar]

140. Clement Y., Calatayud F., Belzung C. Genetic basis of anxiety-like behaviour: a critical review. Brain Res Bull. 2002;57:57–71. [PubMed] [Google Scholar]

141. Rogers DC., Jones DNC., Nelson PR., et al. Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res. 1999;105:207–217. [PubMed] [Google Scholar]

142. van Gaalen MM., Steckler T. Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res. 2000;115:95–106. [PubMed] [Google Scholar]

143. Avgustinovich DF., Lipina TV., Bondar NP., Alekseyenko OV., Kudryavtseva NN. Features of genetically defined anxiety in mice. Behav Genet. 2000;30:101–109. [PubMed] [Google Scholar]

144. Bert B., Fink H., Huston JP., Voits M. Fisher 344 and Wistar rats differ in anxiety and habituation but not in water maze performance. Neurobiol Learn Mem. 2002;78:11–22. [PubMed] [Google Scholar]

145. Rex A., Sondern U., Voigt JP., Franck S., Fink H. Strain differences in fearmotivated behavior of rats. Pharmacol Biochem Behav. 1996;54:107–111. [PubMed] [Google Scholar]

146. Wehner JM., Radcliffe RA., Bowers BJ. Quantitative genetics and mouse behavior. Annu Rev Neurosci. 2001;24:845–867. [PubMed] [Google Scholar]

147. Griebel G., Belzung C., Perrault G., Sanger DJ. Differences in anxietyrelated behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology (Berl). 2000;148:164–170. [PubMed] [Google Scholar]

148. Garrett KM., Niekrasz I., Haque D., Parker KM., Seale TW. Genotypic differences between C57BL/6 and A inbred mice in anxiolytic and sedative actions of diazepam. Behav Genet. 1998;28:125–136. [PubMed] [Google Scholar]

149. Wigger A., Loerscher P., Weissenbacher P., Holsboer F., Landgraf R. Crossfostering and cross-breeding of HAB and LAB rats: a genetic rat model of anxiety. Behav Genet. 2001;31:371–382. [PubMed] [Google Scholar]

150. Plomin R., DeFries JC., McClearn GE., McGuffin P. Behavioral Genetics. 4th ed. New York, NY: Worth Publishers; 2000 [Google Scholar]

151. Wehner JM., Radcliffe RA., Rosman ST., et al. Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet. 1997;17:331–334. [PubMed] [Google Scholar]

152. Turri MG., Datta SR., DeFries J., Henderson ND., Flint J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr Biol. 2001;11:725–734. [PubMed] [Google Scholar]

153. Fernandez-Teruel A., Escorihuela RM., Gray JA., et al. A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res. 2002;12:618–626. [PMC free article] [PubMed] [Google Scholar]

154. Escorihuela RM., Fernandez-Teruel A., Gil L., Aguilar R., Tobeña A., Driscoll P. Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol Behav. 1999;67:19–26. [PubMed] [Google Scholar]

155. Steimer T., la Fleur S., Schulz PE. Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh) and low (RLA/Verh)-avoidance lines. Behav Genet. 1997;27:503–511. [PubMed] [Google Scholar]

156. Roozendaal B., Wiersma A., Driscoll P., Koolhaas JM., Bohus B. Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat. Brain Res. 1992;596:35–40. [PubMed] [Google Scholar]

157. Wiersma A., Knoellema S., Konsman JP., Bohus B., Koolhaas JM. Corticotropin-releasing hormone modulation of a conditioned stress response in the central amygdala of Roman high (RHA/Verh)-avoidance and low (RLA/Verh)-avoidance rats. Behav Genet. 1997;27:547–555. [PubMed] [Google Scholar]

158. Corda MG., Lecca D., Piras G., Di Chiara G., Giorgi O. Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav Genet. 1997;27:527–536. [PubMed] [Google Scholar]

159. Aubry JM., Bartanusz V., Driscoll P., Schulz P., Steimer T., Kiss JZ. Corticotropin-releasing factor and vasopressin mRNA levels in Roman highand low-avoidance rats: response to open field exposure. Neuroendocrinology. 1995;61:89–97. [PubMed] [Google Scholar]

160. Charnay Y., Steimer T., Hugenin C., Driscoll P. [3H]Paroxetine binding sites: brain regional differences between two psychogenetically selected lines of rats. Neurosci Res Commun. 1995;16:29–35. [Google Scholar]

161. Liebsch G., Linthorst ACE., Neumann ID., Reul J., Holsboer FLR. Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology. 1998;19:381–396. [PubMed] [Google Scholar]

162. Liebsch G., Montkowski A., Holsboer F., Landgraf R. Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res. 1998;94:301–310. [PubMed] [Google Scholar]

163. Landgraf R., Wigger A., Holsboer F., Neumann ID. Hyper-reactive hypothalamo-pituitary-adrenocortical axis in rats bred for high anxiety-related behaviour. J Neuroendocrinal. 1999;11:405–407. [PubMed] [Google Scholar]

164. Henniger MSH., Ohl F., Hölter SM., et al. Unconditioned anxiety and social behavior in two rat lines selectively bred for high and low anxietyrelated behaviour. Behav Brain Res. 2000;111:153–163. [PubMed] [Google Scholar]

165. Hermann B., Landgraf R., Keck ME., et al. Pharmacological characterisation of cortical y-aminobutyric acid type A (GABAA) receptor in two Wistar rat lines selectively bred for high and low anxiety-related behaviour. World J Biol Psychiatry. 2000;1:137–143. [PubMed] [Google Scholar]

166. Keck ME., Wigger A., Welt T., et al. Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for the pathogenesis of affective disorders. Neuropsychopharmacology. 2002;26:94–105. [PubMed] [Google Scholar]

167. Henniger MSH., Spanagel R., Wigger A., Landgraf R., Hölter SM. Alcohol self-administration in two rat lines selectively bred for extremes in anxiety-related behavior. Neuropsychopharmacology. 2002;26:729–736. [PubMed] [Google Scholar]

168. Sanchez MM., Ladd CO., Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001;13:419–449. [PubMed] [Google Scholar]

169. Heim C., Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry. 1999;46:1509–1522. [PubMed] [Google Scholar]

170. Heim C., Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49:1023–1039. [PubMed] [Google Scholar]

171. Weinstock M. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol. 2001;65:427–451. [PubMed] [Google Scholar]

172. Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci. 2001;24:1161–1192. [PubMed] [Google Scholar]

173. Wakshlak A., Weinstock M. Neonatal handling reverses behavioral abnormalities induced in rats by prenatal stress. Physiol Behav. 1990;48:289–292. [PubMed] [Google Scholar]

174. Meaney MJ., Mitchell JB., Aitken DH., et al. The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology. 1991;16:85–103. [PubMed] [Google Scholar]

175. Plotsky PM., Meaney MJ. Early, post-natal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res. 1993;18:195–200. [PubMed] [Google Scholar]

176. Smythe JW., Rowe WB., Meaney MJ. Neonatal handling alters serotonin (5-HT) turnover and 5-HT2 receptor binding in selected brain regions: relationship to the handling effect on glucocorticoid receptor expression. Brain Res Dev Brain Res. 1994;80:183–189. [PubMed] [Google Scholar]

177. Tejedor-Real P., Costela C., Gibert-Rahola J. Neonatal handling reduces emotional reactivity and susceptibility to learned helplessness. Involvement of catecholaminergic systems. Life Sci. 1998;62:37–50. [PubMed] [Google Scholar]

178. Weizman R., Lehman J., Leschiner S., et al. Long-lasting effect of earlyhandling on the peripheral benzodiazepine receptor. Pharmacol Biochem Behav. 1999;64:725–729. [PubMed] [Google Scholar]

179. Papaioannou A., Gerozissis K., Prokopiou A., Solaris S., Stylianopoulou F. Sex differences in the effects of neonatal handling on the animal's response to stress and the vulnerability for depressive behaviour. Behav Brain Res. 2002;129:131–139. [PubMed] [Google Scholar]

180. Beane ML., Cole MA., Spencer RL., Rudy JW. Neonatal handling enhances contextual fear conditioning and alter corticosterone stress responses in young rats. Horm Behav. 2002;41:33–40. [PubMed] [Google Scholar]

181. Fernandez-Teruel A., Escorihuela RM., Driscoll P., Tobena A., Bättig K. Infantile (handling) stimulation and behavior in young Roman high- and low-avoidance rats. Physiol Behav. 1991;50:563–565. [PubMed] [Google Scholar]

182. Fernandez-Teruel A., Escorihuela RM., Castellano B., Gonzàlez B., Tobena A. Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairments: focus on the Roman rat lines. Behav Genet. 1997;6:513–526. [PubMed] [Google Scholar]

183. Steimer T., Escorihuela RM., Fernandez-Teruel A., Driscoll P. Long-term behavioural and neuroendocrine changes in Roman high-(RHA/Verh) and low-(RLA/Verh) avoidance rats following neonatal handling. Int J Dev Neurosci. 1998;16:165–174. [PubMed] [Google Scholar]