Which type of relationship is formed when a rat tapeworm attaches itself to a rats intestine?

Learning Objectives
  • Differentiate among the types of symbiosis: commensalism, mutualism, and parasitism

Symbiotic relationships, or symbioses (plural), are close interactions between individuals of different species over an extended period of time which impact the abundance and distribution of the associating populations. Most scientists accept this definition, but some restrict the term to only those species that are mutualistic, where both individuals benefit from the interaction.

A commensalistic relationship occurs when one species benefits from the close, prolonged interaction, while the other neither benefits nor is harmed. Birds nesting in trees provide an example of a commensal relationship. The tree is not harmed by the presence of the nest among its branches. The nests are light and produce little strain on the structural integrity of the branch. Most of the leaves, which the tree uses to obtain energy by photosynthesis, are above the nest, so they are unaffected. The bird, on the other hand, benefits greatly. If the bird had to nest in the open, its eggs and young would be vulnerable to predators.

Which type of relationship is formed when a rat tapeworm attaches itself to a rats intestine?
Figure \(\PageIndex{1}\): Commensalistic relationship: The southern masked-weaver bird is starting to make a nest in a tree in Zambezi Valley, Zambia. This is an example of a commensal relationship, in which one species (the bird) benefits, while the other (the tree) neither benefits nor is harmed.

A second type of symbiotic relationship, mutualism, is where two species both benefit from their interaction. Some scientists believe that these are the only true examples of symbiosis. For example, termites have a mutualistic relationship with protozoa that live in the insect’s gut. The termite benefits from the ability of bacterial symbionts within the protozoa to digest cellulose. The termite itself cannot do this; without the protozoa, it would not be able to obtain energy from its food (cellulose from the wood it chews and eats). The protozoa and the bacterial symbionts benefit by having a protective environment and a constant supply of food from the wood-chewing actions of the termite.

A parasite is an organism that lives in or on another living organism, deriving nutrients from it. In this relationship the parasite benefits, but the organism being fed upon, the host, is harmed. The host is usually weakened by the parasite as it siphons resources the host would normally use to maintain itself. The parasite, however, is unlikely to kill the host. This is because the parasite needs the host to complete its reproductive cycle by spreading to another host.

The reproductive cycles of parasites are often very complex, sometimes requiring more than one host species. A tapeworm is a parasite that causes disease in humans when contaminated, undercooked meat such as pork, fish, or beef is consumed. The tapeworm can live inside the intestine of the host for several years, benefiting from the food the host is bringing into its gut by eating; it may grow to be over 50 ft long by adding segments. The parasite moves from species to species as it requires two hosts to complete its life cycle.

Which type of relationship is formed when a rat tapeworm attaches itself to a rats intestine?
Figure \(\PageIndex{1}\): Lifecycle of a parasitic tapeworm: This diagram shows the life cycle of a pork tapeworm (Taenia solium), a human worm parasite. The eggs of the tapeworm are ingested by the host. When they hatch, the worms travel through the wall of the intestine and begin to grow. Here, the parasite will absorb the nutrition from the host and continue to grow.

Key Points

  • Commensalism is when two organisms share the same environment, where one benefits and the other is unharmed.
  • Trees and birds have a commensalistic relationship; the birds benefit from having a place to build their nests, while the trees are unharmed and not impacted by the bird’s presence.
  • Mutualism is when two species sharing the same environment both benefit from their interactions.
  • The protozoans living within the intestines of termites create a mutualistic relationship with them; the protozoans get a safe place to live while the termites get help digesting the cellulose in their diet.
  • Parasitism occurs when two organisms interact, but while one benefits, the other experiences harm.
  • Parasites harm their hosts, as with the tapeworm attaching itself to the intestine of a cow; the tapeworm absorbs the nutrients from the cow’s diet, preventing them from being absorbed by the cow.

Key Terms

  • mutualism: Any interaction between two species that benefits both.
  • commensalism: A sharing of the same environment by two organisms where one species benefits and the other is unaffected; e.g., barnacles on whales.
  • parasitism: Interaction between two organisms, in which one organism (the parasite) benefits and the other (the host) is harmed.

1. Pojmańska T., Niewiadomska K. Parasites—Inconvenient element in the structure of ecosystem food web. Kosmos. 2010;59:99–110. [Google Scholar]

2. Hadaś E., Derda M. Parasites are still dangerous. Probl. Hig. Epidemiol. 2014;95:6–13. [Google Scholar]

3. Przyjałkowski Z. Studies on the settlement of Aspicularis tetraptera Nitzsch 1821 (Nematoda, Oxyuridae) in non-bacterial mice. Acta Parasitol. Pol. 1972;20:389–395. [Google Scholar]

4. Vythilingam I. Plasmodium knowlesi and Wuchereria bancrofti: Their vectors and challenges for the future. Front Physiol. 2012;3:115. doi: 10.3389/fphys.2012.00115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Zammarchi L., Strohneyer M., Bartalesi F., Bruno E., Munoz J., Buonfrate D., Nicoletti A., Garcia H.H., Pozio E., Bartoloni A. Epidemiology and management of cysticercosis and Taenia solium taeniasis in Europe, Systematic review 1990–2011. PLoS ONE. 2013;8:e69537. doi: 10.1371/annotation/1bcc3e5b-1159-412b-be86-b18d94515cc2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Wędrychowicz H. Evasion of host immunity by parasites. Kosmos. 2005;54:39–48. [Google Scholar]

7. Nazimek K., Bryniarski K. The biological activity of macrophages in health and disease. Postepy Hig. Med. Dosw. 2012;66:507–520. doi: 10.5604/17322693.1004080. [PubMed] [CrossRef] [Google Scholar]

8. Niścigórska J. Liver in infectious diseases. Post. Nauk. Med. 2000;1:27–30. [Google Scholar]

9. Przybyła A., Nowak M., Krzowska-Firych J. Selected parasitic diseases of the liver. Hepatol. Pol. 2014;14:115–122. [Google Scholar]

10. Rutkowska J. Regulation of parasite-host immune response interactions on the cellular level. Now Lek. 2007;76:251–255. [Google Scholar]

11. Bień J., Sałamatin R., Sulima A., Savijoki K., Conn D.B., Nareaho A., Młocicki D. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminuta reveals their immunogenic properties and the presence of New E-S proteins in cestodes. Acta Parasitol. 2016;61:429–442. doi: 10.1515/ap-2016-0058. [PubMed] [CrossRef] [Google Scholar]

12. Johnston M.J., Wang A., Catarino M.E.D., Ball L., Phan V.C., MacDonald J.A., McKay D.M. Extracts of the rat tapeworm, Hymenolepis diminuta, suppres macrophage activation in vitro and alleviate chemically induced colitis in mice. Infect. Immun. 2010;78:1364–1375. doi: 10.1128/IAI.01349-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Maizels R.M., Balic A., Gomez-Escobar N., Nair M., Taylor M.D., Allen J.E. Helminth parasites: Masters of regulation. Immunol. Rev. 2004;201:89–116. doi: 10.1111/j.0105-2896.2004.00191.x. [PubMed] [CrossRef] [Google Scholar]

14. Wilson M.S., Taylor M.D., Balic A., Finney C.A., Lamb J.R., Maizels R.M. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J. Exp. Med. 2005;202:1199–1212. doi: 10.1084/jem.20042572. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Dwinell M.B., Wise R.M., Bas P., Oaks J.A. Hymenolepis diminuta: Mucosal mastocytosis and intestinal smooth muscle hypertrophy occur in tapeworm-infected rats. Exp. Parasitol. 1998;89:92–102. doi: 10.1006/expr.1998.4271. [PubMed] [CrossRef] [Google Scholar]

16. Goswami R., Singh S.M., Kataria M., Somvanshi R. Clinicopathological studies on spontaneous Hymenolepis diminuta infection in wild and laboratory rats. Braz. J. Vet. Pathol. 2011;4:103–111. [Google Scholar]

17. Ishih A., Uchikawa R. Immunoglobulin E and mast cells responses are related to worm biomass but not expulsion of Hymenolepis diminuta during low dose infection in rats. Parasite Immunol. 2000;22:561–566. doi: 10.1046/j.1365-3024.2000.00330.x. [PubMed] [CrossRef] [Google Scholar]

18. McKey D.M., Halton D.W., Johnston C.F., Shaw C., Fairweather I., Buchanan K.D. Hymenolepis diminuta: Changes in the levels of certain intestinal regulatory peptides in infected C57 mice. Exp. Parasitol. 1991;73:15–26. doi: 10.1016/0014-4894(91)90003-F. [PubMed] [CrossRef] [Google Scholar]

19. Read C.P., Kilejian A.Z. Circadian migratory behavior of a cestode symbiote in the rat host. J. Parasitol. 1969;55:574–578. doi: 10.2307/3277301. [PubMed] [CrossRef] [Google Scholar]

20. Reardon C., Sanchez A., Hogaboam C.M., McKay D.M. Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulfate sodium-induced colitis. Infect. Immun. 2001;69:4417–4423. doi: 10.1128/IAI.69.7.4417-4423.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Cook R.L., Roberts L.S. In vivo effects of putative crowding factors on development of Hymenolepis diminuta. J. Parasitol. 1991;77:21–25. doi: 10.2307/3282549. [PubMed] [CrossRef] [Google Scholar]

22. Hopkins C.A., Andreassen J. Inhibition of growth of a tapeworm Hymenolepis diminuta in its normal host (rat) Int. J. Parasitol. 1991;21:47–55. doi: 10.1016/0020-7519(91)90119-R. [PubMed] [CrossRef] [Google Scholar]

23. Stradowski M. Effects of inbreeding in Hymenolepis diminuta (Cestoda) Acta Parasitol. 1994;39:146–149. [Google Scholar]

24. Zavras E.T., Roberts L.S. Developmental physiology of cestodes: Cyclic nucleotides and the identity of putative crowding factors in Hymenolepis diminuta. J. Parasitol. 1985;71:96–105. doi: 10.2307/3281983. [PubMed] [CrossRef] [Google Scholar]

25. Andreassen J., Bennet-Jenkins E.M., Bryant C. Immunology and biochemistry of Hymenolepis diminuta. Adv. Parasitol. 1999;42:243–275. [PubMed] [Google Scholar]

26. Malmberg M., Andreassen J., Malmberg G. Hymenolepis diminuta: A comparison between young developing and small, destrobilated worms in the rat intestine. Z. Parasitenkd. 1985;71:747–757. doi: 10.1007/BF00926800. [PubMed] [CrossRef] [Google Scholar]

27. Sulima A., Bień J., Savijoki K., Nareaho A., Sałamatin R., Conn D.B., Młocicki D. Identification of immunogenic proteins of the cysticercoid of Hymenolepis diminuta. Parasit. Vectors. 2017;10:577. doi: 10.1186/s13071-017-2519-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Pappas P.W., Barley A.J. Beetle-to-beetle transmission and dispersal of Hymenolepis diminuta (Cestoda) eggs via the feces of Tenebrio molitor. J. Parasitol. 1999;85:384–385. doi: 10.2307/3285655. [PubMed] [CrossRef] [Google Scholar]

29. Makki M.S., Mowlavi G., Shahbazi F., Abai M.R., Najafi F., Hosseini-Farash B.R., Teimoori S., Hasanpour H., Naddaf S.R. Identification of Hymenolepis diminuta Cysticercoid Larvae in Tribolium castaneum (Coleoptera: Tenebrionidae) Beetles from Iran. J. Arthropod Borne Dis. 2017;11:338–343. [PMC free article] [PubMed] [Google Scholar]

30. Kołodziej P., Rzymowska J., Stępień-Rukasz H., Lorencowicz R., Lucińska M., Dzióbek M. Analysis of a child infected with Hymenolepis diminuta in Poland. Ann. Agric. Environ. Med. 2014;21:510–511. doi: 10.5604/12321966.1120592. [PubMed] [CrossRef] [Google Scholar]

31. Mowlavi G.H., Mobedi I., Mamishi S., Rezaeian M., Haghi Ashtiani M.T., Kashi M. Hymenolepis diminuta (Rodolphi, 1819) infection in a child from Iran. Iran. J. Publ. Health. 2008;37:120–122. [Google Scholar]

32. Patamia I., Cappello E., Castellano-Chiodo D., Greco F., Nigro L., Cacopardo B. A human case of Hymenolepis diminuta in child from Eastern Sicily. Korean J. Parasitol. 2010;48:167–169. doi: 10.3347/kjp.2010.48.2.167. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Rohela M., Ngui R., Li Y.A.L., Kalaichelvan B., Wan Hafiz W.I., Mohd Redzuan A.N. A case report of Hymenolepis diminuta infection in a Malaysian child. Trop. Biomed. 2012;29:224–230. [PubMed] [Google Scholar]

34. Tena D., Perez Simon M., Gimeno C., Perez Pomata M.T., Illescas S., Amondarin I., Gonzales A., Dominguez J., Bisquert J. Human infection with Hymenolepis diminuta: Case report from Spain. J. Clin. Microbiol. 1998;36:2375–2376. [PMC free article] [PubMed] [Google Scholar]

35. Fal W., Czaplicka H. Effect of experimental hymenolepiasis on various tissue reactions in rats. Wiad. Parazytol. 1991;37:331–342. [PubMed] [Google Scholar]

36. Hopkins C.A., Subramanian G., Stallard H. The development of Hymenolepis diminuta in primary and secondary infections in mice. Parasitology. 1972;64:401–412. doi: 10.1017/S0031182000045479. [PubMed] [CrossRef] [Google Scholar]

37. Read C.P. Longevity of the tapeworm, Hymenolepis diminuta. J. Parasitol. 1967;53:1055–1056. doi: 10.2307/3276836. [PubMed] [CrossRef] [Google Scholar]

38. Harris W.G., Turton J.A. Antibody response to tapeworm (Hymenolepis diminuta) in the rat. Nature. 1973;246:521–522. doi: 10.1038/246521a0. [PubMed] [CrossRef] [Google Scholar]

39. Chappell L.H., Pike A.W. Loss of Hymenolepis diminuta from the rat. Int. J. Parasitol. 1976;6:333–339. doi: 10.1016/0020-7519(76)90056-4. [PubMed] [CrossRef] [Google Scholar]

40. Andreassen J. Immunity to adult cestodes: Basic knowledge and vaccination problems. A review. Parassitologia. 1991;33:45–53. [PubMed] [Google Scholar]

41. Featherston D.W., Wakelin D., Lammas D.A. Inflammatory responses in the intestine during tapeworm infections. Mucosal mast cells and mucosal mast cell proteases in Sprague-Dawley rats infected with Hymenolepis diminuta. Int. J. Parasitol. 1992;22:961–966. doi: 10.1016/0020-7519(92)90054-O. [PubMed] [CrossRef] [Google Scholar]

42. Hesselberg C.A., Andreassen J. Some influences of population density on Hymenolepis diminuta in rats. Parasitology. 1975;71:517–523. doi: 10.1017/S0031182000047272. [PubMed] [CrossRef] [Google Scholar]

43. Hoque T., Bhogal M., Webb R.A. Validation of intestinal controls for gene expression analysis in the intestine of rats infected with Hymenolepis diminuta. Parasitol Int. 2007;56:325–329. doi: 10.1016/j.parint.2007.06.009. [PubMed] [CrossRef] [Google Scholar]

44. Kosik-Bogacka D., Kolasa A. Histopathological changes in small and large intestines during hymenolepidosis in rats. Folia Biol. Krakow. 2012;60:195–198. doi: 10.3409/fb60_3-4.195-198. [PubMed] [CrossRef] [Google Scholar]

45. Martin J., Holland C. Scanning electron microscopic studies of the mucosa of rats infected with Hymenolepis diminuta. J. Helminth. 1984;58:93–99. doi: 10.1017/S0022149X00028558. [PubMed] [CrossRef] [Google Scholar]

46. Starke W.A., Oaks J.A. Ileal mucosal mast cell, eosinophil, and goblet cell populations during Hymenolepis diminuta infection of the rat. J Parasitol. 2001;87:1222–1225. doi: 10.1645/0022-3395(2001)087[1222:IMMCEA]2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]

47. Firlotte W.R. A survey of the parasites of the brown Norway rat. Can. J. Comp. Med. Vet. Sci. 1948;12:187–191. [PubMed] [Google Scholar]

48. Goswami R., Somvanshi R., Singh S.M., Singh S. A preliminary survey on incidence of helminthic and protozoal diseases in rats. Indian J. Vet. Pathol. 2009;33:90–92. [Google Scholar]

49. Sadjjadi S.M., Massoud J. Helminth parasites of wild rodents in Khuzestan Province, South-West of Iran. J. Vet. Parasitol. 1999;13:55–56. [Google Scholar]

50. Waugh C.A., Lindo J.F., Foronda P., Angeles-Santana M., Lorenzo-Morales J., Robinson R.D. Population distributin and zoonotic potential of gastrointestinal helminthes of wild rats Rattus rattus and Rattus norvegicus from Jamaica. J. Parasitol. 2006;92:1014–1018. doi: 10.1645/GE-795R1.1. [PubMed] [CrossRef] [Google Scholar]

51. Webster J.P., Macdonald D.W. Parasites of wild brown rats (Rattus norvegicus) on UK farms. Parasitology. 1995;111:247–255. doi: 10.1017/S0031182000081804. [PubMed] [CrossRef] [Google Scholar]

52. Hindsbo O., Andreassen J., Ruitenberg J. Immunological and histopathological reactions of the rat against the tapeworm Hymenolepis diminuta and the effects anti-thymocyte serum. Parasite Immunol. 1982;4:59–76. doi: 10.1111/j.1365-3024.1982.tb00420.x. [PubMed] [CrossRef] [Google Scholar]

53. Dudzińska E. Influence of the intestinal micro biota on the development of irritable bowel syndrome. Med. Środow. 2016;19:70–76. [Google Scholar]

54. Hart A., Kamm M.A. Review article: Mechanisms of initiation and perpetuation of gut inflammation by stress. Aliment. Pharmacol. Ther. 2002;16:2017–2028. doi: 10.1046/j.1365-2036.2002.01359.x. [PubMed] [CrossRef] [Google Scholar]

55. Wallace J.L. Prostaglandin biology in inflammatory bowel disease. Gastroenterol. Clin. N. Am. 2001;30:971–980. doi: 10.1016/S0889-8553(05)70223-5. [PubMed] [CrossRef] [Google Scholar]

56. Rocha S.M., Cristovao A.C., Campos F.L., Fonseca C.P., Baltazar G. Astrocyte—Derived GNDF is a potent inhibitor of microglial activation. Neurobiol. Dis. 2012;47:407–415. doi: 10.1016/j.nbd.2012.04.014. [PubMed] [CrossRef] [Google Scholar]

57. Meir M., Flemming S., Burkard N., Wagner J., Germer C.T., Schlegel N. The glial cell-line devired neurotrophic factor: A novel regulator of intestinal barier function in health and disease. An. J. Physiol. Gastrointest. Liver Physiol. 2016;310:G1118–G1123. doi: 10.1152/ajpgi.00125.2016. [PubMed] [CrossRef] [Google Scholar]

58. Starke-Buzetti W.A., Oaks J.A. Increased glial-derived neurotrophic factor in the small intestine of rats infected with the tapeworm, Hymenolepis diminuta. Int. J. Exp. Pathol. 2008;89:458–465. doi: 10.1111/j.1365-2613.2008.00606.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Malbon C.C. G proteins indevelopment. Nat. Rev. Mol. Cell Biol. 2005;6:689–701. doi: 10.1038/nrm1716. [PubMed] [CrossRef] [Google Scholar]

60. Bikopoulos G.J., Hoque T., Webb R.A. Infection with the cestode Hymenolepis diminuta induces changes in acetylcholine metabolism and muscarinic receptor mRNA expression in the rat jejunum. Parasitol. Res. 2006;99:231–237. doi: 10.1007/s00436-006-0128-9. [PubMed] [CrossRef] [Google Scholar]

61. Zeiss M.M., Harris N.L. Interactions between the intestinal microbiome and helminth parasites. Parasie Immunol. 2016;38:5–11. doi: 10.1111/pim.12274. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Berrilli F., Di Care D., Cavallero S., D’Amelio S. Interactions between parasites and microbial communities in the human gut. Front Cell Infect. Microbiol. 2012;2:141. doi: 10.3389/fcimb.2012.00141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Przyjałkowski Z. Effect of intestinal bacteria on the host response in Trichinella spiralis infection. Acta Parasitol. Pol. 1978;25:287–292. [Google Scholar]

64. Stefański W. Bacterial flora as one of the factors influencing the settling of parasites in the intestines of their hosts. Acta Parasitol. Pol. 1965;12:1–6. [Google Scholar]

65. Houser B.B., Burns W.C. Experimental infection of gnotobiotic Tenebrio molitor and white rats with Hymenolepis diminuta (Cestoda: Cyclophyllidea) J. Parasitol. 1968;54:69–73. doi: 10.2307/3276876. [PubMed] [CrossRef] [Google Scholar]

66. McKenney E.A., Williamson L., Yoder A.D., Rawls J.F., Bilbo S.D., Parker W. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut. Microbes. 2015;69:182–193. doi: 10.1080/19490976.2015.1047128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Wegener Parfreg L., Jirku M., Sima R., Jalorecka M., Sak B., Grigore K., Jirku Pomajbikova K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS ONE. 2017;12:e0182205. doi: 10.1371/journal.pone.0182205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Neumann M., Goderska K., Grajek K., Grajek W. The in vitro models of gastrointestinal tract to study bioavailability of nutriments. Zywn Nauk Technol. J. A. 2006;1:30–45. [Google Scholar]

69. Evers B.M. Small Intestine. In: Popiela T., editor. Chirurgia Sabistona. Urban & Partner; Bratislava, Slovakia: 2013. pp. 165–187. [Google Scholar]

70. Kosik-Bogacka D., Baranowska-Bosiacka I., Salamatin R. Hymenolepis diminuta: Effect of infection on ion transport in colon and blood picture of rats. Exp. Parasitol. 2010;124:285–294. doi: 10.1016/j.exppara.2009.10.014. [PubMed] [CrossRef] [Google Scholar]

71. Kosik-Bogacka D., Kolasa A., Baranowska-Bosiacka I., Marchlewicz M. Hymenolepis diminuta: The effects of infection on transepithelial ion transport and tight junctions in rat intestines. Exp. Parasitol. 2011;127:398–404. doi: 10.1016/j.exppara.2010.09.001. [PubMed] [CrossRef] [Google Scholar]

72. Furnes J.B., Kunze W.A., Clere N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: Neutral, endocrine and immune responses. Am. J. Physiol. 1999;277:922–928. doi: 10.1152/ajpgi.1999.277.5.G922. [PubMed] [CrossRef] [Google Scholar]

73. Schultheiss G., Hennig B., Schunack W., Prinz G., Diener M. Histamine-induced ion secretion across rat distal colon: In volvement of histamine H1 and H2 receptors. Eur. J. Pharmacol. 2006;546:161–170. doi: 10.1016/j.ejphar.2006.07.047. [PubMed] [CrossRef] [Google Scholar]

74. Zimmerman N.P., Brownfield M.S., DeVente J., Bass P., Oaks J.A. cGMP secreted from the tapeworm Hymenolepis diminuta is a signal molecule to the host intestine. J. Parasitol. 2001;94:771–779. doi: 10.1645/GE-1418.1. [PubMed] [CrossRef] [Google Scholar]

75. Kunzelman K., Mall M. Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiol. Rev. 2002;82:245–289. doi: 10.1152/physrev.00026.2001. [PubMed] [CrossRef] [Google Scholar]

76. Kosik-Bogacka D., Kołodziejczyk L. Ion transport in the colon of rats experimentally infected with liver fluke (Fasciola hepatica) Folia Biol. 2004;52:243–246. doi: 10.3409/1734916044527485. [PubMed] [CrossRef] [Google Scholar]

77. O’Malley K.E., Sloan T., Joyce P., Baird A.W. Type 1 hypersensitivity reactions in intestinal mucosae from rats infected with Fasciola hepatica. Parasite Immunol. 1993;15:449–453. doi: 10.1111/j.1365-3024.1993.tb00630.x. [PubMed] [CrossRef] [Google Scholar]

78. Wang Y.Z., Palmer J.M., Cooke H.J. Neuroimmune regulation of colonic secretion in guinea pigs. Am. J. Physiol. 1991;260:307–314. doi: 10.1152/ajpgi.1991.260.2.G307. [PubMed] [CrossRef] [Google Scholar]

79. Podesta R.B., Mettrick D.F. The effect of bicarbonate and acidification on water and electrolyte absorpyion by the intestine of normal and infected (Hymenolepis diminuta: Cestoda) rats. Am. J. Dig. Dis. 1974;19:725–735. doi: 10.1007/BF01844942. [PubMed] [CrossRef] [Google Scholar]

80. Gill N., Shaikh A.A., Khan M.M., Memon M.S. Influence on intestinal cestodes on the blood picture of brown rats (Rattus norvegicus) of Hyderabad Sindh, Pakistan, Pak. J. Biol. Sci. 2007;10:4479–4484. doi: 10.3923/pjbs.2007.4479.4484. [PubMed] [CrossRef] [Google Scholar]

81. Sommerfelt I.E., Santillan G., Mira G., Ribicich M., De Torres R. Toxocara canis infection in a pig model: Immunological, haematological and blood biochemistry responses. J. Helminthol. 2006;80:73–77. doi: 10.1079/JOH2005324. [PubMed] [CrossRef] [Google Scholar]

82. Weller P.F. Eosinophilia in travelers. Med. Clin. N. Am. 1992;76:1413–1432. doi: 10.1016/S0025-7125(16)30294-2. [PubMed] [CrossRef] [Google Scholar]

83. Habior A. Acute hepatic failure. Post. Nauk. Med. 2014;1:24–30. [Google Scholar]

84. Mathur C.S., Johnson S. Blood profile of house rats naturally infected with Vampirolepis fraternal (Cestoda) Indian J. Helminthol. 1989;4:14–16. [Google Scholar]

85. Moshin M., Rahmam M.M., Das P.M., Fazul Haque A.K.M. Haematological observations in cattle naturally infected with Fasciola gigantic. Bangladesh Vet. 1991;8:31–34. doi: 10.5897/AJB12.2716. [CrossRef] [Google Scholar]

86. Jarret E.E., Miller H.R. Production and activities of IgE in helminth infection. Prog. Allergy. 1982;31:178–233. doi: 10.1159/000406534. [PubMed] [CrossRef] [Google Scholar]

87. Halliwell B., Gutteridge J.M.C. Free Radical in Biology and Medicine. Clarendon Press; Oxford, UK: 1989. Protection Against Oxidants in Biological Systems: The Superoxide Theory of Oxygen Toxicity; pp. 86–123. [Google Scholar]

88. Ohshima H., Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitric oxide in carcinogenesis. Mutat. Res. 1994;305:253–264. doi: 10.1016/0027-5107(94)90245-3. [PubMed] [CrossRef] [Google Scholar]

89. Esterbauer H., Puhl H., Dieber-Rotheneder M., Waeg G., Rabl H. Effect of antioxidants on oxidative modification of LDL. Ann. Med. 1991;23:573–581. doi: 10.3109/07853899109150520. [PubMed] [CrossRef] [Google Scholar]

90. McConnell E.J., Bittelmeyer A.M., Raess B.U. Irreversible inhibition of plasma membrane (Ca2+ + Mg2+)-ATPase and Ca2+ transport by 4-OH-2, 3-trans-nonenal. Arch. Biochem. Biophys. 1999;361:252–256. doi: 10.1006/abbi.1998.0976. [PubMed] [CrossRef] [Google Scholar]

91. Czajka A. Reactive oxygen species and mechanisms of body protection. Now Lek. 2006;75:582–586. [Google Scholar]

92. Selvan J.P., Aranganathan S., Gopalan R., Nalini N. Chemopreventive efficacy of pronyl-lysine on lipid peroxidation and antioxidant status in rat colon carcinogenesis. Fund. Clin. Pharmacol. 2009;23:293–302. doi: 10.1111/j.1472-8206.2009.00670.x. [PubMed] [CrossRef] [Google Scholar]

93. Niwa A., Miyazato T. Reactive oxygen intermediates from eosinophils in mice infected with Hymenolepis nana. Parasite Immunol. 1996;18:285–295. doi: 10.1046/j.1365-3024.1996.d01-102.x. [PubMed] [CrossRef] [Google Scholar]

94. Menzies M., Reverter A., Andronicos N., Hunt P., Windon R., Ingham A. Nematode challenge induces differential expression of oxidant, antioxidant and mucous genes down the longitudinal axis of the sheep gut. Parasite Immunol. 2010;32:36–46. doi: 10.1111/j.1365-3024.2009.01156.x. [PubMed] [CrossRef] [Google Scholar]

95. Kosik-Bogacka D., Baranowska-Bosiacka I., Noceń I., Jakubowska K., Chlubek D. Hymenolepis diminuta: Activity of anti-oxidant enzymes in defferent parts of rat gastrointestinal tract. Exp. Parasitol. 2011;128:265–271. doi: 10.1016/j.exppara.2011.02.026. [PubMed] [CrossRef] [Google Scholar]

96. Skrzycki M., Majewska M., Podsiad M., Czeczot H., Salamatin R., Twarowska J., Grytner-Zięcina B. Hymenolepis diminuta: Experimental studies on the antioksidant system with short and long term infection periods in the rats. Exp. Parasitol. 2011;129:158–163. doi: 10.1016/j.exppara.2011.06.014. [PubMed] [CrossRef] [Google Scholar]

97. Sulima A., Savijoki K., Bień J., Nareako A., Sałamatin R., Conn D.R., Młocicki D. Comparative proteomic analysis of Hymenolepis diminuta cysticercoid and adult sta ges. Front. Microbiol. 2017;8:2672. doi: 10.3389/fmicb.2017.02672. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Burdan F., Chałas A., Szumiło J. Cyclooxygenase and prostanoids biological implications. Postepy Hig. Med. Dosw. 2006;60:129–141. [PubMed] [Google Scholar]

99. Vane J.R., Bakhle Y.S., Botting R.M. Cyclooxygenase 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998;38:97–120. doi: 10.1146/annurev.pharmtox.38.1.97. [PubMed] [CrossRef] [Google Scholar]

100. Kosik-Bogacka D., Baranowska-Bosiacka I., Kolasa-Wołosiuk A., Łanocha-Arendarczyk N., Gutowska I., Korbecki J., Namięta H., Rotter I. The inflamatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp. Parasitol. 2016;169:69–76. doi: 10.1016/j.exppara.2016.07.009. [PubMed] [CrossRef] [Google Scholar]

101. Kargman S., Charleson S., Cartwright M., Frank J., Riendean D., Mancini I., Evans J., O’Neill G. Characterization of Prostaglandin G/H Synthase 1 and 2 in rat, dog, monkey and human gastrointestinal tracts. Gastroenterology. 1996;111:445–454. doi: 10.1053/gast.1996.v111.pm8690211. [PubMed] [CrossRef] [Google Scholar]

102. Ahmad A.K., Abdel-Hafeez E.H., Kamal A.M. Some studies on spontaneous Hymenolepis diminuta infection in laboratory rats. J. Egypt Soc. Parasitol. 2015;45:115–124. doi: 10.12816/0010857. [PubMed] [CrossRef] [Google Scholar]

103. Gieryńska M., Kalinowska-Gacek E. Immunological alert at the mucosal sites. Part II. Życie Wet. 2009;84:115–122. [Google Scholar]

104. Garrett W.S., Gordon J.I., Glimcher L.H. Homeostasis and inflammation in the intestine. Cell. 2010;140:859–870. doi: 10.1016/j.cell.2010.01.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Kalinowska-Gacek E., Gieryńska M. Immunological alert at mucosal surfaces. Part I. Życie Weterynaryjne. 2009;84:17–20. [Google Scholar]

106. Sanz Y., De Palma G. Gut microbiota and probiotics in modulation of epithelium and gut-associated lymphoid tissue function. Int. Rev. Immunol. 2009;28:397–413. doi: 10.3109/08830180903215613. [PubMed] [CrossRef] [Google Scholar]

107. Tennant S.M., Hartland E.L., Phumoonna T., Lyras D., Rood J.I., Robins-Browne R.M., van Driel I.R. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect. Immun. 2008;76:639–645. doi: 10.1128/IAI.01138-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Niedworok M., Sordyl B., Borecka A., Gawor J., Małecka-Panas E. Estimation of eosinophilia, immunoglobulin E and eosinophilic cationic protein concentration during the treatment of toxocariasis. Wiad Parazytol. 2008;54:225–230. [PubMed] [Google Scholar]

109. Zawistowska-Denziak A., Basałaj K., Strojny B., Młocicki D. New data on human macrophages polarization by Hymenolepis diminuta tapeworm—An in vitro study. Front. Immunol. 2017;8:148. doi: 10.3389/fimmu.2017.00148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Aira N., Andersson A.M., Singh S.K., McKay D.M., Blomgran R. Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response. PLoS Negl Trop. Dis. 2017;11:e0005390. doi: 10.1371/journal.pntd.0005390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Graepel R., Leung G., Wang A., Villemaire M., Jirik F.R., Sharkey K.A., McDougall J.J., McKay D.M. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int. J. Parasitol. 2013;43:593–601. doi: 10.1016/j.ijpara.2013.02.006. [PubMed] [CrossRef] [Google Scholar]

112. Matisz C.E., Leung G., Reyes J.L., Wang A., Sharkey K.A., McKay D.M. Adoptive transfer of helminth antigen-pulsed dendritic cells protects against the development of experimental colitis in mice. Eur. J. Immunol. 2015;45:3126–3139. doi: 10.1002/eji.201545579. [PubMed] [CrossRef] [Google Scholar]

113. Melon A., Wang A., Phan V., McKay D.M. Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. J. Biomed. Biotechnol. 2010;2010:384523. doi: 10.1155/2010/384523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Reyes J.L., Fernando M.R., Lopes F., Leung G., Mancini N.L., Matisz C.E., Wang A., McKay D.M. IL-22 restrains tapeworm-mediated protection against experimental colitis via regulation of IL-25 expression. PLoS Pathog. 2016;12:e1005481. doi: 10.1371/journal.ppat.1005481. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Reyes J.L., Wang A., Fernando M.R., Graepel R., Leung G., van Rooijen N., Sigvardsson M., McKay D.M. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. J. Immunol. 2015;194:364–378. doi: 10.4049/jimmunol.1400738. [PubMed] [CrossRef] [Google Scholar]

116. Polińska B., Matowicka-Karna J., Kemona H. The cytokines in inflammatory bowel disease. Postepy Hig. Med. Dosw. 2009;63:389–394. [PubMed] [Google Scholar]

117. Wang A., McKay D.M. Immune modulation by a high molecular weight fraction from the rat tapeworm Hymenolepis diminuta. Parasitology. 2005;130:575–585. doi: 10.1017/S0031182004006985. [PubMed] [CrossRef] [Google Scholar]

118. Arai T., Lopes F., Shute A., Wang A., McKay D.M. Young mice expel the tapeworm Hymenolepis diminuta and are protected from colitis by triggering a memory response with worm antigen. Am. J. Physiol. Gastrointest Liver Physiol. 2018;314:G461–G470. doi: 10.1152/ajpgi.00295.2017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Smyth K., Morton C., Mathew A., Karuturi S., Haly C., Zhang M., Holzknecht Z.E., Swanson C., Lin S.S., Parker W., et al. Production and Use of Hymenolepis diminuta Cysticercoids as Anti-Inflammatory Therapeutics. J. Clin. Med. 2017;6:98. doi: 10.3390/jcm6100098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. McKay D.M., Wallace J.L. Acetic acid induced ulceration in rats is not affected by infection with Hymenolepis diminuta. J. Parasitol. 2009;95:481–482. doi: 10.1645/GE-1776.1. [PubMed] [CrossRef] [Google Scholar]

121. Sauter B., Albert M.L., Francisco L., Larson M., Somersan S., Bhardwaj N. Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 2000;191:423–434. doi: 10.1084/jem.191.3.423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Vabulas R.M., Ahmad-Nejad P., Ghose S., Kirschning C.J., Issels R.D., Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 2002;277:15107–15112. doi: 10.1074/jbc.M111204200. [PubMed] [CrossRef] [Google Scholar]

123. Pachówka M., Kluk M., Korczak-Kowalska G. Role of Toll-like receptors (TLR) in induction and regulation of immune response. Postepy Biol. Komorki. 2009;36:429–442. [Google Scholar]

124. Ortega-Cava C.F., Ishihar S., Rumi M.A., Kawashima K., Ishimura N., Kazumori H., Udagawa J., Kadowaki Y., Kinoshita Y. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J. Immunol. 2003;170:3977–3985. doi: 10.4049/jimmunol.170.8.3977. [PubMed] [CrossRef] [Google Scholar]

125. Abe T., Hemmi H., Miyamoto H., Moriishi K., Tamura S., Takaku H., Akira S., Matsuura Y. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirius. J. Virol. 2005;79:2847–2858. doi: 10.1128/JVI.79.5.2847-2858.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Akira S., Takeda K. Functions of Toll-like receptors: Lessons from KO mice. C. R. Biol. 2004;327:581–589. doi: 10.1016/j.crvi.2004.04.002. [PubMed] [CrossRef] [Google Scholar]

127. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. [PubMed] [CrossRef] [Google Scholar]

128. Aksoy E., Zouain C.S., Vanhoutte F., Fontaine J., Pavelka N., Thieblemont N., Willems F., Ricciardi-Castagnoli P., Goldman M., Capron M., et al. Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J. Biol. Chem. 2005;280:277–283. doi: 10.1074/jbc.M411223200. [PubMed] [CrossRef] [Google Scholar]

129. Ashkar A.A., Rosenthal K.L. Toll-like receptor 9, CpG DNA and innate immunity. Curr. Mol. Med. 2002;2:545–556. doi: 10.2174/1566524023362159. [PubMed] [CrossRef] [Google Scholar]

130. Furrie E., Macfarlane S., Thomson G., MacFarlane G.T. Toll-like receptors -2, -3, and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology. 2005;115:565–574. doi: 10.1111/j.1365-2567.2005.02200.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Medzhitov R., Janeway C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300. doi: 10.1126/science.1068883. [PubMed] [CrossRef] [Google Scholar]

132. Passare C., Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity. Nat. Rev. Immunol. 2004;6:1382–1387. doi: 10.1016/j.micinf.2004.08.018. [PubMed] [CrossRef] [Google Scholar]

133. Rauta P.R., Samanta M., Dash H.R., Nayak B., Das S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol. Lett. 2014;158:14–24. doi: 10.1016/j.imlet.2013.11.013. [PubMed] [CrossRef] [Google Scholar]

134. Iwasaki A., Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004;5:987–995. doi: 10.1038/ni1112. [PubMed] [CrossRef] [Google Scholar]

135. Kosik-Bogacka D., Wojtkowiak-Giera A., Kolasa A., Salamatin R., Jagodziński P.P., Wandurska-Nowak E. Hymenolepis diminuta: Analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Exp. Parasitol. 2012;130:261–266. doi: 10.1016/j.exppara.2011.12.002. [PubMed] [CrossRef] [Google Scholar]

136. Kosik-Bogacka D., Wojtkowiak-Giera A., Kolasa A., Czernomysy-Furowicz D., Lanocha N., Wandurska-Nowak E., Salamatin R., Jagodziński P.P. Hymenolepis diminuta: Analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Part II. Exp. Parasitol. 2013;135:437–445. doi: 10.1016/j.exppara.2013.08.002. [PubMed] [CrossRef] [Google Scholar]

137. Kroening K.D., Zimmerman N.P., Bass P., Oaks J.A. Partial characterization of a tapeworm-secreted signal factor inducing sustained spike potentials in the smooth muscle of the rat small intestine. J. Parasitol. 2002;88:227–231. doi: 10.1645/0022-3395(2002)088[0227:PCOATS]2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]

138. Głobińska A., Kowalski M.L. Natural immunological response to respiratory viruses—Intracellular signalling pathways. Alerg. Astma Immun. 2012;17:66–76. [Google Scholar]

139. Kosik-Bogacka D., Wojtkowiak-Giera A., Kolasa A., Baranowska-Bosiacka I., Lanocha N., Wandurska-Nowak E., Gutowska I., Salamatin R., Jagodziński P.P. Hymenolepis diminuta: Analysis of the expression of Toll-like receptor genes and protein (TLR3 and TLR9) in the small and large intestines of rats. Exp. Parasitol. 2014;145:61–67. doi: 10.1016/j.exppara.2014.07.009. [PubMed] [CrossRef] [Google Scholar]

140. Czerkies M., Kwiatkowska K. Toll-like receptors and their contribution to innate immunity: Focus on TLR4 activation by lipopolysaccharide. Postepy Biol. Komorki. 2013;40:39–64. doi: 10.2478/acb-2014-0001. [CrossRef] [Google Scholar]


Page 2

Which type of relationship is formed when a rat tapeworm attaches itself to a rats intestine?

Biochemical and molecular mechanisms of Hymenolepis diminuta’s effect on the host organism. 1. The parasite affects changes in the metabolism of acetylcholine, which stimulates the action of muscarinic receptors by changing their conformation. The muscarinic receptors can modulate the contraction by binding to the G protein. Activation of phospholipase C (PLC) by the G protein results in the formation of the inositol triphosphate signal molecule (IP3) and thus an increase in Ca2+ concentration in the cytoplasm. Ca2+ ions initiate a contraction, and an increase in their concentration is associated with the greater strength of contraction; 2. Hymenolepidosis causes an increase in the activity and expression of COX-1 and COX-2 that produce TX and PG; 3. H. diminuta in the host’s body may cause oxidative stress manifested by an increase in lipid peroxidation and their products, such as MDA (malondialdehyde dialdehyde), and changes in antioxidant enzyme activity in various parts of the gastrointestinal tract: in the duodenum, a decrease in GPx activity and increase in GR activity; in the intestine an increase in GR, GSH, CAT, and GPx activity and a decrease in SOD activity; 4. The excretory-secretory products (ESP) of the parasite inhibit pro-inflammatory cytokines and chemokines, reducing the expression of transcription factors (NFκB, p65, IRF3) and the CD36 scavenger receptor; 5. H. diminuta infection causes a reduced absorption of electrolytes and glucose in the small intestine of the host; 6. By secretion of cGMP, which connects to the mucous membrane of the host intestine via the cGMP receptor, H. diminuta can affect intestinal peristalsis; 7. In the course of hymenolepidosis, the host organism produces inflammation mediators, including mast cells. The histamine-secreted mastocytes stimulate the nervous system C-fibers that lead to the release of non-noradrenergic non-adrenaline (NANC) neuropeptides, including P (SP), neurokinin A (NKA), and calcitonin-related peptides (CGRP). This phenomenon may lead to neurogenic inflammation and may cause a reduction of transepithelial electrical potential, reducing ion transport; e.g., Na+ and Cl−; 8. The parasite reduces villus length and deepens the crypts in the host’s digestive tract; 9. H. diminuta causes disturbances in hematological blood values and changes in the composition of plasma: an increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and alkaline phosphatase (ALP), a decrease in biochemical parameters, including total protein (TP), albumin (ALB) and globulins (GLOB). Hymenolepidosis causes a reduction in the number of red blood cells (RBC), hemoglobin (HGB), red cell distribution width (RDW), and an increase in mean red cell volume (MCV). In the white blood cell system (WBC) there is a decrease in the number of cases or an increase in the number of eosinophils (EOS) that release the main alkaline protein (MBP) and eosinophil cationic protein (ECP). In the lymphocytic system, the activation of B lymphocytes responsible for the production of IgA class secreting antibodies (S-IgA) and IgE occur. In addition, B lymphocytes from H. diminuta–infected rats reduce the effects of dinitrobenzene sulfonic acid (DNBS), favoring the suppression of colitis and an increase in the production of interleukins (IL-4 and IL-10); 10. Hymenolepidosis causes changes in the composition of the bacterial microbiota in the gut of the host in the form of reducing the percentage of Bacillus spp. in relation to Clostridium spp. 11 H. diminuta infection affects the growth of Toll-like receptor (TLR) expression, including TLR2, TLR3, TLR4 and TLR9 in the host’s digestive tract.