Which description best characterizes the microscopic appearance of Mycobacterium tuberculosis?

1. Aldovini, A., R. N. Husson, and R. A. Young. 1993. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175: 7282-7289. [PMC free article] [PubMed] [Google Scholar]

2. Alland, D., I. Kramnik, T. R. Weisbrod, L. Otsubo, R. Cerny, L. P. Miller, W. R. Jacobs, Jr., and B. R. Bloom. 1998. Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc. Natl. Acad.Sci. USA 95: 13227-13232. [PMC free article] [PubMed] [Google Scholar]

3. Andersen, P. 1994. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect. Immun. 62: 2536-2544. [PMC free article] [PubMed] [Google Scholar]

4. Andersen, P. 2002. TB vaccines: progress and problems. Trends Immunol 22: 160-168. [PubMed] [Google Scholar]

5. Armitige, L. Y., C. Jagannath, A. R. Wanger, and S. J. Norris. 2000. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect. Immun. 68: 767-778. [PMC free article] [PubMed] [Google Scholar]

6. Armstrong, J. A., and P. D. A. Hart. 1975. Phagosome-lysosome Interactions in cultured macrophages infected with virulent tubercle bacilli. J. Exp. Med. 142:1-16. [PMC free article] [PubMed] [Google Scholar]

7. Arruda, S., G. Bomfim, R. Knights, T. Huima-Byron, and L. W. Riley. 1993. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454-1457. [PubMed] [Google Scholar]

8. Azad, A. K., T. D. Sirakova, N. D. Fernandes, and P. E. Kolattukudy. 1997. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272:16741-16745. [PubMed] [Google Scholar]

9. Balasubramanian, V., M. S. Pavelka, S. S. Bardarov, J. Martin, T. R. Weisbrod, R. A. McAdam, B. R. Bloom, and W. R. Jacobs. Jr. 1996. Allelic exchange in Mycobacterium tuberculosis with long linear substrates. J. Bacteriol. 178:273-279. [PMC free article] [PubMed] [Google Scholar]

10. Balcewicz-Sablinska, M., J. Keane, H. Kornfeld, and H. Remold. 1998. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α. J. Immunol. 161: 2636-2641. [PubMed] [Google Scholar]

11. Banerjee, A., E. Dubnau, A. Quemard, V. Balasubramanian, K. S. Um, T. Wilson, D. Collins, G. de Lisle, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227-230. [PubMed] [Google Scholar]

12. Bange, F. C., A. M. Brown, and W. R. Jacobs, Jr. 1996. Leucine auxotrophy restricts growth of Mycobacterium bovis BCG in macrophages. Infect. Immun. 64: 1794-1799. [PMC free article] [PubMed] [Google Scholar]

13. Banu, S., N. Honore, B. Saint-Joanis, D. Philpott, M. C. Prevost, and S. T. Cole. 2002. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol. Microbiol. 44:9-19. [PubMed] [Google Scholar]

14. Bardarov, S., S. Bardarov Jr, Jr., M. S. Pavelka Jr, Jr., V. Sambandamurthy, M. Larsen, J. Tufariello, J. Chan, G. Hatfull, and W. R. Jacobs, Jr. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007-3017. [PubMed] [Google Scholar]

15. Bardarov, S., J. Kriakov, C. Carriere, S. Yu, C. Vaamonde, R. A. McAdam, B. R. Bloom, G. F. Hatfull, and W. R. Jacobs, Jr. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94:10961-10966. [PMC free article] [PubMed] [Google Scholar]

16. Barker, L. P., D. M. Brooks, and P. L. Small. 1998. The identification of Mycobacterium marinum genes differentially expressed in macrophage phagosomes using promoter fusions to green fluorescent protein. Mol. Microbiol. 29: 1167-1177. [PubMed] [Google Scholar]

17. Barnes, D. S. 2000. Historical perspectives on the etiology of tuberculosis. Microbes Infect. 2: 431-440. [PubMed] [Google Scholar]

18. Barry, C. E., III. 2001. Preclinical candidates and targets for tuberculosis therapy. Curr. Opin. Investig. Drugs 2: 198-201. [PubMed] [Google Scholar]

19. Beaucher, J., S. Rodrigue, P. E. Jacques, I. Smith, R. Brzezinski, and L. Gaudreau. 2002. Novel Mycobacterium tuberculosis anti-sigma factor antagonists control sigma F activity by distinct mechanisms. Mol. Microbiol. 45: 1527-1540. [PubMed] [Google Scholar]

20. Behr, M. A., M. A. Wilson, W. P. Gill, H. Salamon, G. K. Schoolnik, S. Rane, and P. M. Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarrays. Science 284: 1520-1523. [PubMed] [Google Scholar]

21. Bekker, L. G., P. Haslett, G. Maartens, L. Steyn, and G. Kaplan. 2000. Thalidomide-induced antigen-specific immune stimulation in patients with human immunodeficiency virus type 1 and tuberculosis. J. Infect. Dis. 181: 954-965. [PubMed] [Google Scholar]

22. Belisle, J. T., V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan, and G. S. Besra. 1997. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276: 1420-1422. [PubMed] [Google Scholar]

23. Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. [PubMed] [Google Scholar]

24. Bermudez, L. E., and J. Goodman. 1996. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun. 64:1400-1406. [PMC free article] [PubMed] [Google Scholar]

25. Berthet, F., J. Rauzier, E. M. Lim, W. Philipp, B. Gicquel, and D. Portnoi. 1995. Characterization of the Mycobacterium tuberculosis erp gene encoding a potential cell surface protein with repetitive structures. Microbiology 141:2123-2130. [PubMed] [Google Scholar]

26. Berthet, F. X., M. Lagranderie, P. Gounon, C. Laurent-Winter, D. Ensergueix, P. Chavarot, F. Thouron, E. Maranghi, V. Pelicic, D. Portnoi, G. Marchal, and B. Gicquel. 1998. Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282:759-762. [PubMed] [Google Scholar]

27. Berthet, F. X., P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. 1998. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144:3195-3203. [PubMed] [Google Scholar]

28. Birkness, K. A., M. Deslauriers, J. H. Bartlett, E. H. White, C. H. King, and F. D. Quinn. 1999. An in vitro tissue culture bilayer model to examine early events in Mycobacterium tuberculosis infection. Infect. Immun. 67:653-658. [PMC free article] [PubMed] [Google Scholar]

29. Bishai, W. R., A. M. Dannenberg, Jr., N. Parrish, R. Ruiz, P. Chen, B. C. Zook, W. Johnson, J. W. Boles, and M. L. Pitt. 1999. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie's pulmonary tubercle count method. Infect. Immun. 67:4931-4934. [PMC free article] [PubMed] [Google Scholar]

30. Bloom, B. (ed.). 1994. Tuberculosis:pathogenesis, protection and control. American Society for Microbiology, Washington, D.C.

31. Bodnar, K. A., N. V. Serbina, and J. L. Flynn. 2001. Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect. Immun. 69:800-809. [PMC free article] [PubMed] [Google Scholar]

32. Bonner, R.F., M. Emmert-Buck, K. Cole, T. Pohida, R. Chuaqui, S. Goldstein, and L. A. Liotta. 1997. Laser capture microdissection: molecular analysis of tissue. Science 278:1481-1483. [PubMed] [Google Scholar]

33. Boon, C., and T. Dick. 2002. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J. Bacteriol. 184:6760-6767. [PMC free article] [PubMed] [Google Scholar]

34. Boon, C., R. Li, R. Qi, and T. Dick. 2001. Proteins of Mycobacterium bovis BCG induced in the Wayne dormancy model. J. Bacteriol. 183:2672-2676. [PMC free article] [PubMed] [Google Scholar]

35. Braunstein, M., and J. Belisle. 2000. Genetics of protein secretion, p. 203-220. In G. F. Hatfull and J. W. R. Jacobs (ed.), Molecular genetics of mycobacteria. American Society for Microbioogy, Washington, D.C.

36. Brennan, P. J., and H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64:29-63. [PubMed] [Google Scholar]

37. Brightbill, H. D., D. H. Libraty, S. R. Krutzik, R. B. Yang, J. T. Belisle, J. R. Bleharski, M. Maitland, M. V. Norgard, S. E. Plevy, S. T. Smale, P. J. Brennan, B. R. Bloom, P. J. Godowski, and R. L. Modlin. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732-736. [PubMed] [Google Scholar]

38. Brosch, R., S. V. Gordon, M. Marmiesse, P. Brodin, C. Buchrieser, K. Eiglmeier, T. Garnier, C. Gutierrez, G. Hewinson, K. Kremer, L. M. Parsons, A. S. Pym, S. Samper, D. van Soolingen, and S. T. Cole. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 99:3684-3689. [PMC free article] [PubMed] [Google Scholar]

39. Brosch, R., S. V. Gordon, A. Pym, K. Eiglmeier, T. Garnier, and S. T. Cole. 2000. Comparative genomics of the mycobacteria. Int. J. Med. Microbiol. 290:143-152. [PubMed] [Google Scholar]

40. Bucca, G., Z. Hindle, and C. P. Smith. 1997. Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J. Bacteriol. 179:5999-6004. [PMC free article] [PubMed] [Google Scholar]

41. Buchmeier, N., A. Blanc-Potard, S. Ehrt, D. Piddington, L. Riley, and E. A. Groisman.2000. A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol. Microbiol. 35:1375-1382. [PubMed] [Google Scholar]

42. Buchmeier, N. A., and F. Heffron. 1991. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59:2232-2238. [PMC free article] [PubMed] [Google Scholar]

43. Butcher, P. D., J. A. Mangan, and I. M. Monahan. 1998. Intracellular gene expression, p. 285-306. In T. Parish and N. G. Stoker (ed.), Mycobacterium tuberculosis protocols. Humana Press, Totowa, N.J.

44. Calder, K. M., and M. A. Horwitz. 1998. Identification of iron-regulated proteins of Mycobacterium tuberculosis and cloning of tandem genes encoding a low iron-induced protein and a metal transporting ATPase with similarities to two-component metal transport systems. Microb. Pathog. 24:133-143. [PubMed] [Google Scholar]

45. Camacho, L. R., P. Constant, C. Raynaud, M. A. Laneelle, J. A. Triccas, B. Gicquel, M. Daffe, and C. Guilhot. 2001. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 276:19845-19854. [PubMed] [Google Scholar]

46. Camacho, L. R., D. Ensergueix, E. Perez, B. Gicquel, and C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34:257-267. [PubMed] [Google Scholar]

47. Caseli, N., and S. Ehrt. 2001. Plasmid vectors, p. 1-17. In T. Parish and N. G. Stoker (ed.), Mycobacterium tuberculosis protocols. Humana Press, Totowa, N.J.

48. Chan, J., K. Tanaka, D. Carroll, J. Flynn, and B. R. Bloom. 1995. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect. Immun. 63:736-740. [PMC free article] [PubMed] [Google Scholar]

49. Chan, J., X. Ran, S. W. Hunter, P. J. Brennan, and B. R. Bloom. 1991. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 59:1755-1761. [PMC free article] [PubMed] [Google Scholar]

50. Chan, J., Y. Xing, R. S. Magliozzo, and B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175: 1111-1122. [PMC free article] [PubMed] [Google Scholar]

51. Chaudun, N. 2000. Haussmann Au Crible. Editions des Syrtes, Paris, France.

52. Chen, P., R. E. Ruiz, Q. Li, R. F. Silver, and W. R. Bishai. 2000. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigma F. Infect. Immun. 68:5575-5580. [PMC free article] [PubMed] [Google Scholar]

53. Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eigenmeir, S. Gas, C. E. Barry III, F. Tekala, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Conner, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, M. S, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter, K. Seegar, J. Skelton, R. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Burrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544. [PubMed] [Google Scholar]

54. Cole, S. T., K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson, P. R. Wheeler, N. Honore, T. Garnier, C. Churcher, D. Harris, K. Mungall, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. M. Davies, K. Devlin, S. Duthoy, T. Feltwell, A. Fraser, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, C. Lacroix, J. Maclean, S. Moule, L. Murphy, K. Oliver, M. A. Quail, M. A. Rajandream, K. M. Rutherford, S. Rutter, K. Seeger, S. Simon, M. Simmonds, J. Skelton, R. Squares, S. Squares, K. Stevens, K. Taylor, S. Whitehead, J. R. Woodward, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:1007-1011. [PubMed] [Google Scholar]

55. Cole, S. T., and D. R. Smith. 1994. Toward mapping and sequencing the genome of Mycobacterium tuberculosis, p. 227-238. In B. R. Bloom (ed.), Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, D.C.

56. Collins, D. M., R. P. Kawakami, G. W. de Lisle, L. Pascopella, B. R. Bloom, and W. R. Jacobs, Jr. 1995. Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 92:8036-8040. [PMC free article] [PubMed] [Google Scholar]

57. Collins, F. M. 1998. Tuberculosis research in a cold climate. Tubercle Lung Dis. 78: 99-107. [PubMed] [Google Scholar]

58. Converse, P. J., A. M. Dannenberg, Jr., J. E. Estep, K. Sugisaki, Y. Abe, B. H. Schofield, and M. L. Pitt. 1996. Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect. Immun. 64: 4776-4787. [PMC free article] [PubMed] [Google Scholar]

59. Cox, J. S., B. Chen, M. MacNeil, and W. R. Jacobs. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 79-83. [PubMed] [Google Scholar]

60. Crowle, A. J., R. Dahl, E. Ross, and M. H. May. 1991. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect. Immun. 59:1823-1831. [PMC free article] [PubMed] [Google Scholar]

61. Daffe, M., and P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131-203. [PubMed] [Google Scholar]

62. Daniel, T. M., J. H. Bates, and K. A. Downes. 1994. History of tuberculosis, p. 13-24. In B. R. Bloom (ed.), Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, D.C.

63. Dannenberg, A. M., Jr., and J. A. Rook. 1994. Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses. Dual mechanisms that control bacillary multiplication, p. 459-483. In B. R. Bloom (ed.), Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, D.C.

64. Das Gupta, S. K., M. D. Bashyam, and A. K. Tyagi. 1993. Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175:5186-5192. [PMC free article] [PubMed] [Google Scholar]

65. Davis, E. O., H. S. Thangaraj, P. C. Brooks, and M. J. Colston. 1994. Evidence of selection for protein introns in the RecAs of pathogenic bacteria. EMBO J. 13:699-703. [PMC free article] [PubMed] [Google Scholar]

66. Dellagostin, O. A., G. Esposito, L. J. Eales, J. W. Dale, and J. McFadden. 1995. Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiology 141:1785-1792. [PubMed] [Google Scholar]

67. DeMaio, J., Y. Zhang, C. Ko, and W. R. Bishai. 1997. Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tubercule Lung Dis. 78:3-12. [PubMed] [Google Scholar]

68. DeMaio, J., Y. Zhang, C. Ko, D. B. Young, and W. R. Bishai. 1996. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93:2790-2794. [PMC free article] [PubMed] [Google Scholar]

69. Denis, M. 1994. Human monocytes/macrophages: NO or no NO. J. Leukoc. Biol. 55:682-684. [PubMed] [Google Scholar]

70. Derbyshire, K. M., C. Takacs, and J. Huang. 2000. Using the EZ:TNTMTransposomeTM for transposon mutagenesis in Mycobacterium smegmatis. Epicentre Forum 7:1-4. [Google Scholar]

71. Detweiler, C. S., D. B. Cunanan, and S. Falkow. 2001. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc. Natl. Acad. Sci. USA 98:5850-5855. [PMC free article] [PubMed] [Google Scholar]

72. De Voss, J. J., K. Rutter, B. G. Schroeder, H. Su, Y. Zhu, and C. E. Barry III. 2000. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. USA 97:1252-1257. [PMC free article] [PubMed]

73. Dubey, V. S., T. D. Sirakova, and P. E. Kolattukudy. 2002. Disruption of msl3 abolishesthe synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol. Microbiol. 45: 1451-1459. [PubMed] [Google Scholar]

74. Dubnau, E., J. Chan, C. Raynaud, V. P. Mohan, M. A. Laneelle, K. Yu, A. Quemard, I. Smith, and M. Daffe. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36: 630-637. [PubMed] [Google Scholar]

75. Dubnau, E., P. Fontan, R. Manganelli, S. Soares-Appel, and I. Smith. 2002. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect. Immun. 70:2787-2795. [PMC free article] [PubMed] [Google Scholar]

76. Dubnau, E., M.-A. Laneelle, S. Soares, A. Benichou, T. Vaz, D. Prome, M. Daffe, and A. Quemard. 1997. Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol. Microbiol. 23: 313-322. [PubMed] [Google Scholar]

77. Dubos, R., and J. Dubos. 1952. The white plague. Little, Brown and Co, Boston, Mass.

78. Dunn, P. L., and R. J. North. 1995. Virulence ranking of some Mycobacterium tuberculosis and Mycobacterium bovis strains according to their ability to multiply in the lungs, induce lung pathology, and cause mortality in mice. Infect. Immun. 63:3428-3437. [PMC free article] [PubMed] [Google Scholar]

79. Dussurget, O., G. M. Rodriguez, and I. Smith. 1996. An ideR mutant of Mycobacterium smegmatis has a derepressed siderophore production and an altered oxidative-stress response. Mol. Microbiol. 22:535-544. [PubMed] [Google Scholar]

80. Dussurget, O., G. M. Rodriguez, and I. Smith. 1998. Protective role of the mycobacterial IdeR against reactive oxygen species and isoniazid toxicity. Tubercule Lung Dis. 79:99-106. [PubMed] [Google Scholar]

81. Dussurget, O., G. Stewart, O. Neyrolles, P. Pescher, D. Young, and G. Marchal. 2001. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect. Immun. 69:529-533. [PMC free article] [PubMed] [Google Scholar]

82. Edwards, K. M., M. H. Cynamon, R. K. Voladri, C. C. Hager, M. S. DeStefano, K. T. Tham, D. L. Lakey, M. R. Bochan, and D. S. Kernodle. 2001. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med. 164:2213-2219. [PubMed] [Google Scholar]

83. Ehrt, S., D. Schnappinger, S. Bekiranov, J. Drenkow, S. Shi, T. R. Gingeras, T. Gaasterland, G. Schoolnik, and C. Nathan. 2001. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194: 1123-1140. [PMC free article] [PubMed] [Google Scholar]

84. Eisen, M. B., and P. O. Brown. 1999. DNA arrays for analysis of gene expression. Methods Enzymol. 303:179-205. [PubMed] [Google Scholar]

85. Eriksson, S., S. Lucchini, A. Thompson, M. Rhen, and J. C. Hinton. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47:103-118. [PubMed] [Google Scholar]

86. Ewann, F., M. Jackson, K. Pethe, A. Cooper, N. Mielcarek, D. Ensergueix, B. Gicquel, C. Locht, and P. Supply. 2002. Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect. Immun. 70:2256-2263. [PMC free article] [PubMed] [Google Scholar]

87. Falcone, V., E. Bassey, W. Jacobs, Jr., and F. Collins. 1995. The immunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes. Microbiology 141:1239-1245. [PubMed] [Google Scholar]

88. Fang, F. C., S. J. Libby, N. A. Buchmeier, P. C. Loewen, J. Switala, J. Harwood, and D. G. Guiney. 1992. The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. USA 89:11978-11982. [PMC free article] [PubMed] [Google Scholar]

89. Fenton, M. J., and M. W. Vermeulen. 1996. Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect. Immun. 64:683-690. [PMC free article] [PubMed] [Google Scholar]

90. Ferguson, J. S., D. R. Voelker, F. X. McCormack, and L. S. Schlesinger. 1999. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163:312-321. [PubMed] [Google Scholar]

91. Ferrari, G., H. Langen, M. Naito, and J. Pieters. 1999. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435-447. [PubMed] [Google Scholar]

92. Fields, P. I., E. A. Groisman, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059-1062. [PubMed] [Google Scholar]

93. Fisher, M. A., B. B. Plikaytis, and T. M. Shinnick. 2002. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J. Bacteriol. 184:4025-4032. [PMC free article] [PubMed] [Google Scholar]

94. Fleischmann, R. D., D. Alland, J. A. Eisen, L. Carpenter, O. White, J. Peterson, R. DeBoy, R. Dodson, M. Gwinn, D. Haft, E. Hickey, J. F. Kolonay, W. C. Nelson, L. A. Umayam, M. Ermolaeva, S. L. Salzberg, A. Delcher, T. Utterback, J. Weidman, H. Khouri, J. Gill, A. Mikula, W. Bishai, W. R. Jacobs Jr, Jr., J. C. Venter, and C. M. Fraser. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184:5479-5490. [PMC free article] [PubMed] [Google Scholar]

95. Flynn, J. L., C. A. Scanga, K. E. Tanaka, and J. Chan. 1998. Effects of aminoguanidine on latent murine tuberculosis. J. Immunol. 160:1796-1803. [PubMed] [Google Scholar]

96. Fogg, G. C., C. M. Gibson, and M. G. Caparon. 1994. The identification of rofA, a positive acting regulatory component of prtF expression: use of an mγδ-based shuttle mutagenesis strategy in Streptococcus pyogenes. Mol. Microbiol. 11:671-684. [PubMed] [Google Scholar]

97. Fortin, A., E. Diez, D. Rochefort, L. Laroche, D. Malo, G. A. Rouleau, P. Gros, and E. Skamene. 2001. Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 74:21-35. [PubMed] [Google Scholar]

98. Frehel, C., C. de Chastellier, T. Lang, and N. Rastogi. 1986. Evidence for inhibition of fusion of lysosomal and prelysosomal compartments with phagosomes in macrophages infected with pathogenic Mycobacterium avium. Infect. Immun. 52:252-262. [PMC free article] [PubMed] [Google Scholar]

99. Frieden, T. R., P. I. Fujiwara, R. M. Washko, and M. A. Hamburg. 1995. Tuberculosis in New York City—turning the tide. N. Engl. J. Med. 333:229-233. [PubMed] [Google Scholar]

100. Friedman, L. N. (ed.). 2001. Tuberculosis: current concepts and treatment, 2nd ed. CRC Press, Inc., Boca Raton, Fla.

101. Frischkorn, K., P. Sander, M. Scholz, K. Teschner, T. Prammananan, and E. C. Bottger. 1998. Investigation of mycobacterial recA function: protein introns in the RecA of pathogenic mycobacteria do not affect competency for homologous recombination. Mol. Microbiol. 29:1203-1214. [PubMed] [Google Scholar]

102. Fritz, C., S. Maass, A. Kreft, and F. C. Bange. 2002. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect. Immun. 70:286-291. [PMC free article] [PubMed] [Google Scholar]

103. Fuangthong, M., A. F. Herbig, N. Bsat, and J. D. Helmann. 2002. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184:3276-3286. [PMC free article] [PubMed] [Google Scholar]

104. Garay. S. 1996. Pulmonary tuberculosis. p. 373-412. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

105. Garay, S. 1996. Tuberculosis and the human immunodeficiency virus infection, p. 443-465. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

106. Gatfield, J., and J. Pieters. 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647-1650. [PubMed] [Google Scholar]

107. Gaynor, C. D., F. X. McCormack, D. R. Voelker, S. E. McGowan, and L. S. Schlesinger. 1995. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J. Immunol. 155:5343-5351. [PubMed] [Google Scholar]

108. Glickman, M. S., J. S. Cox, and W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5:717-727. [PubMed] [Google Scholar]

109. Glickman, M. S., and W. R. Jacobs, Jr. 2001. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104:477-485. [PubMed] [Google Scholar]

110. Gold, B., G. M. Rodriguez, S. A. Marras, M. Pentecost, and I. Smith. 2001. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 42:851-865. [PubMed] [Google Scholar]

111. Gomez, J. E., and W. R. Bishai. 2000. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc. Natl. Acad. Sci. USA 97:8554-8559. [PMC free article] [PubMed] [Google Scholar]

112. Gomez, M., G. Nair, L. Doukhan, and I. Smith. 1998. sigA is an essential gene in Mycobacterium smegmatis. Mol. Microbiol. 29:617-628. [PubMed] [Google Scholar]

113. Gomez, M., and I. Smith. 2000. Determinants of mycobacterial gene expression, p. 111-129. In G. F. Hatfull and W. R. Jacobs, Jr (ed.), Molcular genetics of mycobacteria. American Society for Microbiology, Washington. D.C.

114. Gonzalez-Juarrero, M., and I. M. Orme. 2001. Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infect. Immun. 69:1127-1133. [PMC free article] [PubMed] [Google Scholar]

115. Graham, J. E., and J. E. Clark-Curtiss. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl Acad. Sci. USA 96:11554-11559. [PMC free article] [PubMed] [Google Scholar]

116. Grange, J. M. 1996. Mycobacteria and human disease, 2nd ed. Oxford University Press, New York, N.Y.

117. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:1835-1842. [PMC free article] [PubMed] [Google Scholar]

118. Haas, F., and S. S. Haas. 1996. The origins of Mycobacterium tuberculosis and the notion of its contagiousness, p. 3-19. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

119. Harth, G., and M. A. Horwitz. 2003. Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect. Immun. 71:456-464. [PMC free article] [PubMed] [Google Scholar]

120. Harth, G., and M. A. Horwitz. 1999. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J. Exp. Med. 189:1425-1436. [PMC free article] [PubMed] [Google Scholar]

121. Harth, G., P. C. Zamecnik, J. Y. Tang, D. Tabatadze, and M. A. Horwitz. 2000. Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-l-glutamate/glutamine cell wall structure, and bacterial replication. Proc. Natl. Acad. Sci. USA 97:418-423. [PMC free article] [PubMed] [Google Scholar]

122. Hatfull, G. F., and W. R. Jacobs, Jr. (ed.). 2000. Molecular genetics of mycobacteria. American Society for Microbiology, Washington, D.C.

123. Helmann, J. D. 1999. Anti-sigma factors. Curr. Opin. Microbiol. 2:135-141. [PubMed] [Google Scholar]

124. Hensel, M., S. J. Shea, C. Gleeson, M. D. Jones, E. Dalton, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400-403. [PubMed] [Google Scholar]

125. Heym, B., E. Stavropoulos, N. Honore, P. Domenech, B. Saint-Joanis, T. M. Wilson, D. M. Collins, M. J. Colston, and S. T. Cole. 1997. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect. Immun. 65:1395-1401. [PMC free article] [PubMed] [Google Scholar]

126. Hickman, S. P., J. Chan, and P. Salgame. 2002. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J. Immunol. 168:4636-4642. [PubMed] [Google Scholar]

127. Hinds, J., E. Mahenthiralingam, K. E. Kempsell, K. Duncan, R. W. Stokes, T. Parish, and N. G. Stoker. 1999. Enhanced gene replacement in mycobacteria. Microbiology 145:519-527. [PubMed] [Google Scholar]

128. Hobson, R. J., A. J. McBride, K. E. Kempsell, and J. W. Dale. 2002. Use of an arrayed promoter-probe library for the identification of macrophage-regulated genes in Mycobacterium tuberculosis. Microbiology 148:1571-1579. [PubMed] [Google Scholar]

129. Hoch, J. A., and T. J. Silhavy (ed.). 1995. Two-component signal transduction. American Society for Microbiology, Washington, D.C.

130. Hoiseth, S. K., and B. A. Stocker. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238-239. [PubMed] [Google Scholar]

131. Hondalus, M. K., S. Bardarov, R. Russell, J. Chan, W. R. Jacobs, Jr., and B. R. Bloom. 2000. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 68:2888-2898. [PMC free article] [PubMed] [Google Scholar]

132. Hopewell, P. C. 1994. Overview of clinical tuberculosis, p. 25-46. In B. R. Bloom (ed.), Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, D.C.

133. Horwitz, M. A., G. Harth, B. J. Dillon, and S. Maslesa-Galic. 2000. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA 97:13853-13858. [PMC free article] [PubMed] [Google Scholar]

134. Horwitz, M. A., and F. R. Maxfield. 1984. Legionella pneumophilia inhibits acidification of its phagosome in human monocytes. J. Cell Biol. 99:1936.. [PMC free article] [PubMed] [Google Scholar]

135. Hou, J. Y., J. E. Graham, and J. E. Clark-Curtiss. 2002. Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect. Immun. 70:3714-3726. [PMC free article] [PubMed] [Google Scholar]

136. Hu, Y., J. A. Mangan, J. Dhillon, K. M. Sole, D. A. Mitchison, P. D. Butcher, and A. R. Coates. 2000. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J. Bacteriol. 182:6358-6365. [PMC free article] [PubMed] [Google Scholar]

137. Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend. 2000. Functional discovery via a compendium of expression profiles. Cell 102:109-126. [PubMed] [Google Scholar]

138. Hunter, S. W., H. Gaylord, and P. J. Brennan. 1986. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J. Biol. Chem. 261:12345-12351. [PubMed] [Google Scholar]

139. Hutter, B., and T. Dick. 1999. Molecular genetic characterization of whiB3, a mycobacterial homologue of a Streptomyces sporulation factor. Res. Microbiol. 150:295-301. [PubMed] [Google Scholar]

140. Iseman, M. 1994. Evolution of drug resistant tuberculosis: a tale of two species. Proc. Natl. Acad. Sci. USA 91:2428-2429. [PMC free article] [PubMed] [Google Scholar]

141. Jackson, M., S. W. Phalen, M. Lagranderie, D. Ensergueix, P. Chavarot, G. Marchal, D. N. McMurray, B. Gicquel, and C. Guilhot. 1999. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect. Immun. 67:2867-2873. [PMC free article] [PubMed] [Google Scholar]

142. Jacobs, W. R., Jr., P. Brennan, G. Curlin, A. Ginsberg, M. Adams, R. Fleischmann, C. Fraser, J. C. Venter, T. Shinnick, W. Bishai, H. Smith, K. Stover, and G. Hatfull. 1996. Comparative sequencing. Science 274:17-18. [PubMed] [Google Scholar]

143. Jagirdar, J., and D. ZagZag. 1996. Pathology and insights into pathogenesis of tuberculosis, p. 467-491. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

144. Jensen-Cain, D. M., and F. D. Quinn. 2001. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microb. Pathog. 30:271-278. [PubMed] [Google Scholar]

145. Jiao, X., R. Lo-Man, P. Guermonprez, L. Fiette, E. Deriaud, S. Burgaud, B. Gicquel, N. Winter, and C. Leclerc. 2002. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol. 168:1294-1301. [PubMed] [Google Scholar]

146. Jungblut, P. R., E. C. Muller, J. Mattow, and S. H. Kaufmann. 2001. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect. Immun. 69:5905-5907. [PMC free article] [PubMed] [Google Scholar]

147. Jungblut, P. R., U. E. Schaible, H. J. Mollenkopf, U. Zimny-Arndt, B. Raupach, J. Mattow, P. Halada, S. Lamer, K. Hagens, and S. H. Kaufmann. 1999. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33:1103-1117. [PubMed] [Google Scholar]

148. Kalpana, G. V., B. R. Bloom, and W. R. Jacobs, Jr. 1991. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88:5433-5437. [PMC free article] [PubMed] [Google Scholar]

149. Kamholz, S. L. 1996. Pleural tuberculosis, p. 483-491. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

150. Kang, J. G., M. S. Paget, Y. J. Seok, M. Y. Hahn, J. B. Bae, J. S. Hahn, C. Kleanthous, M. J. Buttner, and J. H. Roe. 1999. RsrA, an anti-sigma factor regulated by redox change. EMBO J. 18:4292-4298. [PMC free article] [PubMed] [Google Scholar]

151. Kaushal, D., B. G. Schroeder, S. Tyagi, T. Yoshimatsu, C. Scott, C. Ko, L. Carpenter, J. Mehrotra, Y. C. Manabe, R. D. Fleischmann, and W. R. Bishai. 2002. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Proc. Natl. Acad. Sci. USA 99:8330-8335. [PMC free article] [PubMed] [Google Scholar]

152. Kaye, K., and T. R. Frieden. 1996. Tuberculosis control: the relevance of classic principles in an era of acquired immunodeficiency syndrome and multidrug resistance. Epidemiol. Rev. 18:52-63. [PubMed] [Google Scholar]

153. Keane, J., M. K. Balcewicz-Sablinska, H. G. Remold, G. L. Chupp, B. B. Meek, M. J. Fenton, and H. Kornfeld. 1997. Infection by Mycobacterium tuberculosis promotes human alveolar macrophages apoptosis. Infect. Immun. 65:298-304. [PMC free article] [PubMed] [Google Scholar]

154. Kivi, M., X. Liu, S. Raychaudhuri, R. B. Altman, and P. M. Small. 2002. Determining the genomic locations of repetitive DNA sequences with a whole-genome microarray: IS 6110 in Mycobacterium tuberculosis. J. Clin. Microbiol. 40:2192-2198. [PMC free article] [PubMed] [Google Scholar]

155. Koch, R. 1882. Die Aetiologie der Tuberkulose. Berl. Klin. Wochenschr. 19:221-230. [Reprint, Am. Rev. Tuberc. 25: 285-323, 1932.] [Google Scholar]

156. Kramnik, I., W. F. Dietrich, P. Demant, and B. R. Bloom. 2000. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 97:8560-8568. [PMC free article] [PubMed] [Google Scholar]

157. Laochumroonvorapong, P., S. Paul, K. B. Elkon, and G. Kaplan. 1996. H2O2 induces monocyte apoptosis and reduces viability of Mycobacterium avium-M, intracellulare within cultured human monocytes. Infect. Immun. 64:452-459. [PMC free article] [PubMed] [Google Scholar]

158. Lathigra, R., Y. Zhang, M. Hill, M. J. Garcia, P. S. Jackett, and J. Ivanyi. 1996. Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberculosis. Res. Microbiol. 147:237-249. [PubMed] [Google Scholar]

159. Lee, B.-Y., and M. A. Horwitz. 1995. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J. Clin. Investig. 96:245-249. [PMC free article] [PubMed] [Google Scholar]

160. Lee, M. H., L. Pascopella, W. R. Jacobs, Jr., and G. F. Hatfull. 1991. Site-specific integration of mycobacteriophage L5: Integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc. Natl. Acad. Sci. USA 88:3111-3115. [PMC free article] [PubMed] [Google Scholar]

161. Lee, M. L., F. C. Kuo, G. A. Whitmore, and J. Sklar. 2000. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97:9834-9839. [PMC free article] [PubMed] [Google Scholar]

162. Lewis, K. N., R. Liao, K. M. Guinn, M. J. Hickey, S. Smith, M. A. Behr, and D. R. Sherman. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J. Infect. Dis. 187:117-123. [PMC free article] [PubMed] [Google Scholar]

163. Li, Z., C. Kelley, F. Collins, D. Rouse, and S. Morris. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177:1030-1035. [PubMed] [Google Scholar]

164. Lipscomb, M. F., and B. J. Masten. 2002. Dendritic cells: immune regulators in health and disease. Physiol. Rev. 82:97-130. [PubMed] [Google Scholar]

165. Lipsitch, M., and A. O. Sousa. 2002. Historical intensity of natural selection for resistance to tuberculosis. Genetics 161:1599-1607. [PMC free article] [PubMed] [Google Scholar]

166. Litwin, C. M., and S. B. Calderwood. 1993. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6:137-149. [PMC free article] [PubMed] [Google Scholar]

167. Lounis, N., C. Truffot-Pernot, J. Grosset, V. R. Gordeuk, and J. R. Boelaert. 2001. Iron and Mycobacterium tuberculosis infection. J. Clin. Virol. 20:123-126. [PubMed] [Google Scholar]

168. MacMicking, J., R. North, R. LaCourse, J. Mudgett, S. Shah, and C. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94:5243-5248. [PMC free article] [PubMed] [Google Scholar]

169. MacMicking, J. D., C. Nathan, G. Hom, N. Chartrain, D. S. Fletcher, M. Trumbauer, K. Stevens, Q.-W. Xie, K. Sokol, N. Hutchinson, H. Chen, and J. S. Mudgett. 1995. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641-650. [PubMed] [Google Scholar]

170. Mahairas, G. G., P. J. Sabo, M. J. Hickey, D. C. Singh, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178:1274-1282. [PMC free article] [PubMed] [Google Scholar]

171. Mahan, M., J. Slauch, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686-688. [PubMed] [Google Scholar]

172. Mahan, M. J., J. W. Tobias, J. M. Slauch, P. C. Hanna, R. J. Collier, and J. J. Mekalanos. 1995. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl. Acad. Sci. USA 92:669-673. [PMC free article] [PubMed] [Google Scholar]

173. Mahenthiralingam, E., B. I. Marklund, L. A. Brooks, D. A. Smith, G. J. Bancroft, and R. W. Stokes. 1998. Site-directed mutagenesis of the 19-kilodalton lipoprotein antigen reveals no essential role for the protein in the growth and virulence of Mycobacterium intracellulare. Infect. Immun. 66:3626-3634. [PMC free article] [PubMed] [Google Scholar]

174. Majorov, K. B., I. V. Lyadova, T. K. Kondratieva, E. B. Eruslanov, E. I. Rubakova, M. O. Orlova, V. V. Mischenko, and A. S. Apt. 2003. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages. Infect. Immun. 71:697-707. [PMC free article] [PubMed] [Google Scholar]

175. Malik, Z. A., G. M. Denning, and D. J. Kusner. 2000. Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191:287-302. [PMC free article] [PubMed] [Google Scholar]

176. Manabe, Y. C., B. J. Saviola, L. Sun, J. R. Murphy, and W. R. Bishai. 1999. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA 96:12844-12848. [PMC free article] [PubMed] [Google Scholar]

177. Manca, C., L. Tsenova, C. E. Barry III A. Bergtold, S. Freeman, P. A. Haslett, J. M. Musser, V. H. Freedman, and G. Kaplan. 1999. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol. 162:6740-6746. [PubMed] [Google Scholar]

178. Manca, C., L. Tsenova, A. Bergtold, S. Freeman, M. Tovey, J. M. Musser, C. E. Barry III, V. H. Freedman, and G. Kaplan. 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc. Natl. Acad. Sci. USA 98:5752-5757. [PMC free article] [PubMed] [Google Scholar]

179. Manganelli, R., E. Dubnau, S. Tyagi, F. M. Kramer, and I. Smith. 1999. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol. Microbiol. 31:715-724. [PubMed] [Google Scholar]

180. Manganelli, R., S. Tyagi, and I. Smith. 2001. Real time PCR using molecular beacons: a new tool to identifypoint mutations and to analyze gene expression in Mycobacterium tuberculosis, p. 295-310. In T. Parish and N. Stoker (ed.), Methods in molecular medicine: Mycobacterium tuberculosis protocols, vol. 54. Humana Press, Inc., Totowa, NJ. [PubMed]

181. Manganelli, R., M. I. Voskuil, G. K. Schoolnik, E. Dubnau, M. Gomez, and I. Smith. 2002. Role of the extracytoplasmic-function sigma Factor sigma H in Mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45:365-374. [PubMed] [Google Scholar]

182. Manganelli, R., M. I. Voskuil, G. K. Schoolnik, and I. Smith. 2001. The Mycobacterium tuberculosis ECF sigma factor sigma E: role in global gene expression and survival in macrophages. Mol. Microbiol. 41:423-437. [PubMed] [Google Scholar]

183. Marcinkeviciene, J. A., R. S. Magliozzo, and J. S. Blanchard. 1995. Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation. J. Biol. Chem. 38:22290-22295. [PubMed] [Google Scholar]

184. Mariani, F., G. Cappelli, G. Riccardi, and V. Colizzi. 2000. Mycobacterium tuberculosis H37Rv comparative gene-expression analysis in synthetic medium and human macrophage. Gene 253:281-291. [PubMed] [Google Scholar]

185. Mayuri, G. Bagchi, T. K. Das, and J. S. Tyagi. 2002. Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two component system, Rv3134c and chaperone α-crystalline homologues. FEMS Microbiol. Lett. 211:231-237. [PubMed] [Google Scholar]

186. McAdam, R. A., T. R. Weisbrod, J. Martin, J. D. Scuderi, A. M. Brown, J. D. Cirillo, B. R. Bloom, and W. R. Jacobs, Jr. 1995. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect. Immun. 63:1004-1012. [PMC free article] [PubMed] [Google Scholar]

187. McFadden, J. 1996. Recombination in mycobacteria. Mol. Microbiol. 21:205-211. [PubMed] [Google Scholar]

188. McKinney, J. D., K. H. Z. Bentrup, E. J. Munoz-Elias, A. Miczak, B. Chen, W. T. Chan, D. Swenson, J. C. Sacchettini, W. R. Jacobs, Jr., and D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxalate shunt enzyme isocitrate lyase. Science 406:735-738. [PubMed] [Google Scholar]

189. Meghji, S., P. A. White, S. P. Nair, K. Reddi, K. Heron, B. Henderson, A. Zaliani, G. Fossati, P. Mascagni, J. F. Hunt, M. M. Roberts, and A. R. Coates. 1997. Mycobacterium tuberculosis chaperonin 10 stimulates bone resorption: a potential contributory factor in Pott's disease. J. Exp. Med. 186:1241-1246. [PMC free article] [PubMed] [Google Scholar]

190. Mehta, P. K., C. H. King, E. H. White, J. J. Murtagh, Jr., and F. D. Quinn. 1996. Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect. Immun. 64:2673-2679. [PMC free article] [PubMed] [Google Scholar]

191. Melo, M. D., and R. W. Stokes. 2000. Interaction of Mycobacterium tuberculosis with MH-S, an immortalized murine alveolar macrophage cell line: a comparison with primary murine macrophages. Tubercle Lung Dis. 80:35-46. [PubMed] [Google Scholar]

192. Miller, S. I., A. M. Kukral, and J. J. Mekalanos. 1989. A two component regulatory system (phoP and phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86:5054-5058. [PMC free article] [PubMed] [Google Scholar]

193. Molle, V., W. J. Palframan, K. C. Findlay, and M. J. Buttner. 2000. WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 182:1286-1295. [PMC free article] [PubMed] [Google Scholar]

194. Mollenkopf, H. J., P. R. Jungblut, B. Raupach, J. Mattow, S. Lamer, U. Zimny-Arndt, U. E. Schaible, and S. H. Kaufmann. 1999. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20:2172-2180. [PubMed] [Google Scholar]

195. Moncrief, M. B., and M. E. Maguire. 1998. Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect. Immun. 66:3802-3809. [PMC free article] [PubMed] [Google Scholar]

196. Munger, J. S., and J. H. A. Chapman. 1996. Tissue destruction by proteases, p. 353-361. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

197. Nathan, C. F., and J. J. B. Hibbs. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3:65.. [PubMed] [Google Scholar]

198. Nau, G. J., J. F. Richmond, A. Schlesinger, E. G. Jennings, E. S. Lander, and R. A. Young. 2002. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99:1503-1508. [PMC free article] [PubMed] [Google Scholar]

199. Neufert, C., R. K. Pai, E. H. Noss, M. Berger, W. H. Boom, and C. V. Harding. 2001. Mycobacterium tuberculosis 19-kDa lipoprotein promotes neutrophil activation. J. Immunol. 167:1542-1549. [PubMed] [Google Scholar]

200. Nicholson, S., M. da G. Bonecini-Almeida, J. R. Lapa e Silva, C. Nathan, Q. W. Xie, R. Mumford, J. R. Weidner, J. Calaycay, J. Geng, N. Boechat, C. Linhares, W. Rom, and J. L. Ho. 1996. Inducible nitricoxide synthase in pulmonary alveolar macrophages in patients with active pulmonary tuberculosis. J. Exp. Med. 183:2293-2302. [PMC free article] [PubMed] [Google Scholar]

201. Noss, E. H., R. K. Pai, T. J. Sellati, J. D. Radolf, J. Belisle, D. T. Golenbock, W. H. Boom, and C. V. Harding. 2001. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167:910-918. [PubMed] [Google Scholar]

202. O'Brien, L., J. Caramichael, D. B. Lowrie, and P. W. Andrew. 1994. Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect. Immun. 62:5187-5190. [PMC free article] [PubMed] [Google Scholar]

203. O'Brien, R. J. 2001. Tuberculosis: scientific blueprint for tuberculosis drug development. Global Alliance for TB Drug Development, New York, N.Y. [PubMed]

204. Oh, S. H., and K. F. Chater. 1997. Denaturation of circular or linear DNA facilities targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179:122-127. [PMC free article] [PubMed] [Google Scholar]

205. Orme, I. M., and D. N. McMurray. 1996. The immune response to tuberculosis in animal models, p. 269-280. In W. N. Rom and S. Garay (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.

206. Paget, M. S., V. Molle, G. Cohen, Y. Aharonowitz, and M. J. Buttner. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigma R regulon. Mol. Microbiol. 42:1007-1020. [PubMed] [Google Scholar]

207. Paget, M. S. B., J.-G. Kang, J.-H. Roe, and M. J. Buttner. 1998. σR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 17:5776-5782. [PMC free article] [PubMed] [Google Scholar]

208. Papavinasasundaram, K. G., M. J. Colston, and E. O. Davis. 1998. Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol. Microbiol. 30:525-534. [PubMed] [Google Scholar]

209. Parish, T., B. G. Gordhan, R. A. McAdam, K. Duncan, V. Mizrahi, and N. G. Stoker. 1999. Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology 145:3497-3503. [PubMed] [Google Scholar]

210. Parish, T., and N. G. Stoker. 1997. Development and use of a conditional antisense mutagenesis system in mycobacteria. FEMS Microbiol. Lett. 154:151-157. [PubMed] [Google Scholar]

211. Parsons, L. M., C. S. Jankowski, and K. M. Derbyshire. 1998. Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis. Mol. Microbiol. 28:571-582. [PubMed] [Google Scholar]

212. Pascopella, L., F. M. Collins, J. M. Martin, M. H. Lee, G. F. Hatfull, C. K. Stover, B. R. Bloom, and W. R. Jacobs, Jr. 1994. Use of in vivo complementation in Mycobacerium tuberculosis to identify a genomic fragment associated with virulence. Infect. Immun. 62:1313-1319. [PMC free article] [PubMed] [Google Scholar]

213. Patel, B. K., D. K. Banerjee, and P. D. Butcher. 1991. Characterization of the heat shock response in Mycobacterium bovis BCG. J. Bacteriol. 173:7982-7987. [PMC free article] [PubMed] [Google Scholar]

214. Pavelka, M. S., Jr., and W. R. Jacobs, Jr. 1999. Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J. Bacteriol. 181:4780-4789. [PMC free article] [PubMed] [Google Scholar]

215. Pelicic, V., J.-M. Reyrat, and B. Gicquel. 1996. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J. Bacteriol. 178:1197-1199. [PMC free article] [PubMed] [Google Scholar]

216. Pelicic, V., M. Jackson, J. M. Reyrat, W. R. Jacobs, B. Gicquel, and C. Guilhot. 1997. Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94:10955-10960. [PMC free article] [PubMed] [Google Scholar]

217. Pelicic, V., J.-M. Reyrat, and B. Gicquel. 1996. Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol. Microbiol. 20:919-925. [PubMed] [Google Scholar]

218. Pelicic, V., J. M. Reyrat, and B. Gicquel. 1998. Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol. Microbiol. 28:413-420. [PubMed] [Google Scholar]

219. Perez, E., S. Samper, Y. Bordas, C. Guilhot, B. Gicquel, and C. Martin. 2001. An essential role of phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol. 41:179-187. [PubMed] [Google Scholar]

220. Pethe, K., S. Alonso, F. Biet, G. Delogu, M. J. Brennan, C. Locht, and F. D. Menozzi. 2001. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190-194. [PubMed] [Google Scholar]

221. Peyron, P., C. Bordier, E. N. N'Diaye, and I. Maridonneau-Parini. 2000. Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J. Immunol. 165:5186-5191. [PubMed] [Google Scholar]

222. Piddington, D. L., F. C. Fang, T. Laessig, A. M. Cooper, I. M. Orme, and N. A. Buchmeier. 2001. Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect. Immun. 69:4980-4987. [PMC free article] [PubMed] [Google Scholar]

223. Pohl, E., R. K. Holmes, and W. G. Hol. 1999. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J. Mol. Biol. 285:1145-1156. [PubMed] [Google Scholar]

224. Post, F. A., C. Manca, O. Neyrolles, B. Ryffel, D. B. Young, and G. Kaplan. 2001. Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits Mycobacterium smegmatis-induced cytokine production by human macrophages in vitro. Infect. Immun. 69:1433-1439. [PMC free article] [PubMed] [Google Scholar]

225. Predich, M., L. Doukhan, G. Nair, and I. Smith. 1995. Characterization of RNA polymerase and two σ factor genes from Mycobacterium smegmatis. Mol. Microbiol. 15:355-366. [PubMed] [Google Scholar]

226. Primm, T. P., S. J. Andersen, V. Mizrahi, D. Avarbock, H. Rubin, and C. E. Barry III. 2000. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol. 182:4889-4898. [PMC free article] [PubMed] [Google Scholar]

227. Pym, A. S., P. Brodin, R. Brosch, M. Huerre, and S. T. Cole. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46:709-717. [PubMed] [Google Scholar]

228. Pym, A. S., P. Domenech, N. Honore, J. Song, V. Deretic, and S. T. Cole. 2001. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol. 40:879-889. [PubMed] [Google Scholar]

229. Quadri, L. E. N., J. Sello, T. A. Keating, P. H. Weinreb, and C. T. Walsh. 1998. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5:631-645. [PubMed] [Google Scholar]

230. Quemard, A., A. Dessen, M. Sugantino, J. W. R. Jacobs, J. C. Sacchettini, and J. S. Blanchard. 1996. Binding of catalase-peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J. Am. Chem. Soc. 118:1561-1562. [Google Scholar]

231. Ramakrishnan, L., N. A. Federspiel, and S. Falkow. 2000. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288:1436-1439. [PubMed] [Google Scholar]

232. Raman, S., T. Song, X. Puyang, S. Bardarov, W. R. Jacobs, Jr., and R. N. Husson. 2001. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 183:6119-6125. [PMC free article] [PubMed] [Google Scholar]

233. Rathman, M., L. P. Barker, and S. Falkow. 1997. The unique trafficking pattern of Salmonella typhimirium-containing phagosomes in murine macrophages is independent of the mechanism of entry. Infect. Immun. 65:1475-1485. [PMC free article] [PubMed] [Google Scholar]

234. Rathman, M., M. D. Sjaastad, and S. Falkow. 1996. Acidification of phagosomes containing Salmonella typhimirium in murine macrophages. Infect. Immun. 64:2765-2773. [PMC free article] [PubMed] [Google Scholar]

235. Ratledge, C., and M. Ewing. 1996. The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology 142:2207-2212. [PubMed] [Google Scholar]

236. Raynaud, C., C. Guilhot, J. Rauzier, Y. Bordat, V. Pelicic, R. Manganelli, I. Smith, B. Gicquel, and M. Jackson. 2002. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 45:203-217. [PubMed] [Google Scholar]

237. Raynaud, C., K. G. Papavinasasundaram, R. A. Speight, B. Springer, P. Sander, E. C. Bottger, M. J. Colston, and P. Draper. 2002. The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol. Microbiol. 46:191-201. [PubMed] [Google Scholar]

238. Rees, J. R. W., and P. D'Arcy Hart. 1961. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br. J. Exp. Pathol. 42:83-88. [PMC free article] [PubMed] [Google Scholar]

239. Renshaw, P. S., P. Panagiotidou, A. Whelan, S. V. Gordon, R. G. Hewinson, R. A. Williamson, and M. D. Carr. 2002. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6∗CFP-10 complex. Implications for pathogenesis and virulence. J. Biol. Chem. 277:21598-21603. [PubMed] [Google Scholar]

240. Reyrat, J. M., F.-X. Berthet, and B. Gicquel. 1995. The urease gene of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis BCG. Proc. Natl. Acad. Sci. USA 92:8768-8772. [PMC free article] [PubMed] [Google Scholar]

241. Rindi, L., L. Fattorini, D. Bonanni, E. Iona, G. Freer, D. Tan, G. Deho, G. Orefici, and C. Garzelli. 2002. Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice. Microbiology 148:3873-3880. [PubMed] [Google Scholar]

242. Rivera-Marrero, C. A., M. A. Burroughs, R. A. Masse, F. O. Vannberg, D. L. Leimbach, J. Roman, and J. J. Murtagh, Jr. 1998. Identification of genes differentially expressed in Mycobacterium tuberculosis by differential display PCR. Microb. Pathog. 25:307-316. [PubMed] [Google Scholar]

243. Rodriguez, G. M., B. Gold, M. Gomez, O. Dussurget, and I. Smith. 1999. Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tubercle Lung Dis. 79:287-298. [PubMed] [Google Scholar]

244. Rodriguez, G. M., M. I. Voskuil, B. Gold, G. K. Schoolnik, and I. Smith. 2002. ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70:3371-3381. [PMC free article] [PubMed] [Google Scholar]

245. Rom, W. N., and S. Garay (ed.). 1996. Tuberculosis. Little, Brown and Co., Boston, Mass.

246. Rosenkrands, I., R. A. Slayden, J. Crawford, C. Aagaard, C. E. Barry, and P. Andersen. 2002. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J. Bacteriol. 184:3485-3491. [PMC free article] [PubMed] [Google Scholar]

247. Rubin, E. J., B. J. Akerley, V. N. Novik, D. J. Lampe, R. N. Husson, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96:1645-1650. [PMC free article] [PubMed] [Google Scholar]

248. Ryan, F. 1992. The forgotten plague. Little, Brown and Co., Boston, Mass.

249. Sambandamurthy, V. K., X. Wang, B. Chen, R. G. Russell, S. Derrick, F. M. Collins, S. L. Morris, and W. R. Jacobs, Jr. 2002. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8:1171-1174. [PubMed] [Google Scholar]

250. Sander, P., A. Meier, and E. C. Bottger. 1995. rpsl+: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16:991-1000. [PubMed] [Google Scholar]

251. Sander, P., T. Prammananan, and E. Bottger. 1996. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol. Microbiol. 22:841-848. [PubMed] [Google Scholar]

252. Sansonetti, P. J., A. Ryter, P. Clerc, A. T. Maurelli, and J. Mounier. 1986. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plamid-mediated contact hemolysis. Infect. Immun. 51:461-469. [PMC free article] [PubMed] [Google Scholar]

253. Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98:12712-12717. [PMC free article] [PubMed] [Google Scholar]

254. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150:2920-2930. [PubMed] [Google Scholar]

255. Schmitt, M. P., M. Predich, L. Doukhan, I. Smith, and R. K. Holmes. 1995. Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect. Immun. 63:4284-4289. [PMC free article] [PubMed] [Google Scholar]

256. Schoolnik, G. K. 2002. Microarray analysis of bacterial pathogenicity. Adv. Microb. Physiol. 46:1-45. [PubMed] [Google Scholar]

257. Schuller, S., J. Neefjes, T. Ottenhoff, J. Thole, and D. Young. 2001. Coronin is involved in uptake of Mycobacterium bovis BCG in human macrophages but not in phagosome maintenance. Cell. Microbiol. 3:785-793. [PubMed] [Google Scholar]

258. Segal, W., and H. Bloch. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol 72:132-141. [PMC free article] [PubMed] [Google Scholar]

259. Segal, W., and H. Bloch. 1957. Pathogenic and immunogenic differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. Am. Rev. Tuberc. Pulm. Dis. 75:495-500. [PubMed] [Google Scholar]

260. Senaldi, G., S. Yin, C. L. Shaklee, P. F. Piguet, T. W. Mak, and T. R. Ulich. 1996. Corynebacterium parvum- and Mycobacterium bovis bacillus Calmette-Guerin-induced granuloma formation is inhibited in TNF receptor 1 (TNF-RI) knockout mice and by treatment with soluble TNF-RI. J. Immunol. 157:5022-5026. [PubMed] [Google Scholar]

261. Senaratne, R. H., H. Mobasheri, K. G. Papavinasasundaram, P. Jenner, E. J. Lea, and P. Draper. 1998. Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv, J. Bacteriol. 180:3541-3547. [PMC free article] [PubMed] [Google Scholar]

262. Sherman, D. R., P. J. Sabo, M. J. Hickey, T. M. Arain, G. G. Mahairas, Y. Yuan, C. E. Barry, and C. K. Stover. 1995. Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc. Natl. Acad. Sci. USA 92:6625-6629. [PMC free article] [PubMed] [Google Scholar]

263. Sherman, D. R., M. Voskuil, D. Schnappinger, R. Liao, M. I. Harrell, and G. K. Schoolnik. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc. Natl. Acad. Sci. USA 98:7534-7539. [PMC free article] [PubMed] [Google Scholar]

264. Shi, L., Y. J. Jung, S. Tyagi, M. L. Gennaro, and R. J. North. 2003. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl. Acad. Sci. USA 100:241-246. [PMC free article] [PubMed] [Google Scholar]

265. Skjot, R. L. V., T. Oettinger, I. Roswnkrands, P. Ravn, I. Brock, S. Jacobsen, and P. Andersen. 2000. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect. Immun. 68:214-220. [PMC free article] [PubMed] [Google Scholar]

266. Smith, D. A., T. Parish, N. G. Stoker, and G. J. Bancroft. 2001. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 69:1142-1150. [PMC free article] [PubMed] [Google Scholar]

267. Smith, I., O. Dussurget, G. M. Rodriguez, J. Timm, M. Gomez, E. Dubnau, B. Gold, and R. Manganelli. 1998. Extra- and intracellular expression of Mycobacterium tuberculosis genes. Tubercle Lung Dis. 79:91-97. [PubMed] [Google Scholar]

268. Snapper, S. B., L. Lugosi, A. Jekkel, R. E. Melton, T. Kieser, B. R. Bloom, and W. R. Jacobs, Jr. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad Sci. USA 85:6987-6991. [PMC free article] [PubMed] [Google Scholar]

269. Snapper, S. B., R. E. Melton, S. Mustapha, T. Kieser, and W. R. Jacobs, Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4:1911-1919. [PubMed] [Google Scholar]

270. Soliveri, J. A., J. Gomez, W. R. Bishai, and K. F. Chater. 2000. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146:333-343. [PubMed] [Google Scholar]

271. Sonnenberg, M. G., and J. T. Belisle. 1997. Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect. Immun. 65:4515-4524. [PMC free article] [PubMed] [Google Scholar]

272. Spohn, G., and V. Scarlato. 1999. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol. Microbiol. 34:663-674. [PubMed] [Google Scholar]

273. Sreevatsan, S., X. Pan, K. E. Stockbauer, N. D. Connell, B. N. Kreiswirth, T. S. Whittam, and J. M. Musser. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl. Acad. Sci. USA 94:9869-9874. [PMC free article] [PubMed] [Google Scholar]

274. Stead, W. W. 1997. The origin and erratic global spread of tuberculosis. How the past explains the present and is the key to the future. Clin. Chest Med. 18:65-77. [PubMed] [Google Scholar]

275. Stewart, G. R., V. A. Snewin, G. Walzl, T. Hussell, P. Tormay, P. O'Gaora, M. Goyal, J. Betts, I. N. Brown, and D. B. Young. 2001. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nature Med. 7:732-737. [PubMed] [Google Scholar]

276. Stewart, G. R., L. Wernisch, R. Stabler, J. A. Mangan, J. Hinds, K. G. Laing, D. B. Young, and P. D. Butcher. 2002. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129-3138. [PubMed] [Google Scholar]

277. Steyn, A. J., D. M. Collins, M. K. Hondalus, W. R. Jacobs, Jr., R. P. Kawakami, and B. R. Bloom. 2002. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc. Natl. Acad. Sci. USA 99:3147-3152. [PMC free article] [PubMed] [Google Scholar]

278. Stocker, B. A. 2000. Aromatic-dependent salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them. J. Biotechnol. 83:45-50. [PubMed] [Google Scholar]

279. Stokes, R. W., and D. Doxsee. 1999. The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocyte-derived macrophages. Cell. Immunol. 197:1-9. [PubMed] [Google Scholar]

280. Stover, C. K., V. F. de la Cruz, T. R. Fuerst, J. E. Burlein, L. A. Benson, L. T. Bennett, G. P. Bansal, J. F. Young, M. H. Lee, G. F. Hatfull, S. B. Snapper, R. G. Barletta. W. R. Jacobs, Jr., and B. R. Bloom. 1991. New use of BCG for recombinant vaccines. Nature 351:456-460. [PubMed] [Google Scholar]

281. Sturgill-Koszycki, S., P. H. Schlesinger, P. Chakraborty, P. L. Haddix, H. L. Collins, A. K. Fok, R. D. Allen, S. L. Gluck, J. Heuser, and D. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678-681. [PubMed] [Google Scholar]

282. SundarRaj, C. V., and T. Ramakrishnan. 1970. Transduction in Mycobacterium smegmatis. Nature 228:280-281. [PubMed] [Google Scholar]

283. Talavera, W., R. Miranda, K. Lessnau, and L. Klapholz. 2001. Extrapulmonary tuberculosis, p. 139-190. In L. N. Friedman (ed.), Tuberculosis: current concepts and treatment, 2nd ed. CRC Press, Inc., Boca Raton, Fla.

284. Taneja, B., and S. C. Mande. 2001. Metal ions modulate the plastic nature of Mycobacterium tuberculosis chaperonin-10. Protein Eng. 14:391-395. [PubMed] [Google Scholar]

285. Tao, X., N. Schiering, H. Y. Zeng, D. Ringe, and J. R. Murphy. 1994. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol. Microbiol. 14:191-197. [PubMed] [Google Scholar]

286. Tascon, R. E., C. S. Soares, S. Ragno, E. Stavropoulos, E. M. Hirst, and M. J. Colston. 2000. Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology 99:473-480. [PMC free article] [PubMed] [Google Scholar]

287. Thoma-Uszynski, S., S. Stenger, O. Takeuchi, M. T. Ochoa, M. Engele, P. A. Sieling, P. F. Barnes, M. Rollinghoff, P. L. Bolcskei, M. Wagner, S. Akira, M. V. Norgard, J. T. Belisle, P. J. Godowski, B. R. Bloom, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544-1547. [PubMed] [Google Scholar]

288. Triccas, J. A., F. X. Berthet, V. Pelicic, and B. Gicquel. 1999. Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology 145:2923-2930. [PubMed] [Google Scholar]

289. Troesch, A., H. Nguyen, C. G. Miyada, S. Desvarenne, T. R. Gingeras, P. M. Kaplan, P. Cros, and C. Mabilat. 1999. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J. Clin. Microbiol. 37:49-55. [PMC free article] [PubMed] [Google Scholar]

290. Trudeau, E. L. 1887. Environment in its relation to the progress of bacterial invasion in tuberculosis. Am. J. Sci. 94:118-123. [PMC free article] [PubMed] [Google Scholar]

291. Tsenova, L., A. Bergtold, V. H. Freedman, R. A. Young, and G. Kaplan. 1999. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc. Natl. Acad. Sci. USA 96:5657-5662. [PMC free article] [PubMed] [Google Scholar]

292. Tsuchiya, S., Y. Kobayashi, Y. Goto, H. Okumura, S. Nakae, T. Konno, and K. Tada. 1982. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42:1530-1536. [PubMed] [Google Scholar]

293. Tullius, M. V., G. Harth, and M. A. Horwitz. 2001. High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect. Immun. 69:6348-6363. [PMC free article] [PubMed] [Google Scholar]

294. Tyagi, A. K., S. K. D. Gupta, and S. Jain. 2000. Gene expression: reporter technologies, p. 131-147. In G. F. Hatfull and W. R. Jacobs, Jr. (ed.), Molecular genetics of mycobacteria. American Society for Microbiology, Washington, D.C.

295. Tyagi, S., D. B. Bratu, and F. R. Kramer. 1998. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16:49-53. [PubMed] [Google Scholar]

296. Tyagi, S., and F. R. Kramer. 1996. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303-308. [PubMed] [Google Scholar]

297. van Crevel, R., T. H. Ottenhoff, and J. W. van der Meer. 2002. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev. 15:294-309. [PMC free article] [PubMed] [Google Scholar]

298. Via, L. E., D. Deretic, R. J. Ulmer, N. S. Hibler, L. A. Huber, and V. Deretic. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272:13326-13331. [PubMed] [Google Scholar]

299. von Reyn, C. F., and J. M. Vuola. 2002. New vaccines for the prevention of tuberculosis. Clin. Infect Dis. 35:465-474. [PubMed] [Google Scholar]

300. Reference deleted.

301. Waaler, H. T. 2002. Tuberculosis and poverty. Int. J. Tubercle Lung Dis. 6:745-746. [PubMed] [Google Scholar]

302. Wallgren, A. 1948. The time table of tuberculosis. Tubercle 29:245-251. [PubMed] [Google Scholar]

303. Wallis, R. S., M. Palaci, S. Vinhas, A. G. Hise, F. C. Ribeiro, K. Landen, S. H. Cheon, H. Y. Song, M. Phillips, R. Dietze, and J. J. Ellner. 2001. A whole blood bactericidal assay for tuberculosis. J. Infect. Dis. 183:1300-1303. [PubMed] [Google Scholar]

304. Wards, B. J., and D. M. Collins. 1996. Electroporation at elevated temperatures substantially improves transformation frequency of slow-growing mycobacteria. FEMS Microbiol. Lett. 145:101-105. [PubMed] [Google Scholar]

305. Wards, B. J., G. W. de Lisle, and D. M. Collins. 2000. An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine. Tubercle Lung Dis. 80:185-189. [PubMed] [Google Scholar]

306. Wayne, L. G. 1994. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis. 13:908-914. [PubMed] [Google Scholar]

307. Wayne, L. G., and K. Y. Liu. 1982. Glyoxalate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37:1042-1049. [PMC free article] [PubMed] [Google Scholar]

308. Wayne, L. G., and H. A. Sramek. 1994. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 38:2054-2058. [PMC free article] [PubMed] [Google Scholar]

309. Weber, I., C. Fritz, S. Ruttkowski, A. Kreft, and F. C. Bange. 2000. Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol. Microbiol. 35:1017-1025. [PubMed] [Google Scholar]

310. Wei, J., J. L. Dahl, J. W. Moulder, E. A. Roberts, P. O'Gaora, D. B. Young, and R. L. Friedman. 2000. Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J. Bacteriol. 182:377-384. [PMC free article] [PubMed] [Google Scholar]

311. Wei, X.-Q., I. G. Charles, A. Smith, J. Ure, G.-J. Feng, F.-P. Huang, D. Xu, W. Muller, S. Moncada, and F. Y. Liew. 1995. Altered immune responses of mice lacking inducible nitric oxide synthase. Nature 375:408-411. [PubMed] [Google Scholar]

312. Wernisch, L., S. L. Kendall, S. Soneji, A. Wietzorrek, T. Parish, J. Hinds, P. D. Butcher, and N. G. Stoker. 2003. Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19:53-61. [PubMed] [Google Scholar]

313. Wieles, B., T. H. M. Ottenhoff, T. M. Steenwijk, K. L. M. C. Franken, R. R. P. deVries, and J. A. M. Langermans. 1997. Increased extracellular survival of Mycobacterium smegmatis containing the Mycobacterium leprae thioredoxin-thioredoxin reductase gene. Infect. Immun. 65:2537-2541. [PMC free article] [PubMed] [Google Scholar]

314. Wilson, M., J. DeRisi, H. H. Kristensen, P. Imboden, S. Rane, P. O. Brown, and G. K. Schoolnik. 1999. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96:12833-12838. [PMC free article] [PubMed] [Google Scholar]

315. Wilson, T., G. W. de Lisle, J. A. Marcinkeviciene, J. S. Blanchard, and D. M. Collins. 1998. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144:2687-2695. [PubMed] [Google Scholar]

316. Wilson, T., B. J. Wards, S. J. White, B. Skou, G. W. de Lisle, and D. M. Collins. 1997. Production of avirulent Mycobacterium bovis strains by illegitimate recombination with deoxyribonucleic acid fragments containing an interrupted ahpC gene. Tubercle Lung Dis. 78:229-235. [PubMed] [Google Scholar]

317. Wilson, T. M., G. W. de Lisle, and D. M. Collins. 1995. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol. Microb. 15:1009-1015. [PubMed] [Google Scholar]

318. Wong, D. K., B. Y. Lee, M. A. Horwitz, and B. W. Gibson. 1999. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect. Immun. 67:327-336. [PMC free article] [PubMed] [Google Scholar]

318a. World Health Organization. 2002. Global tuberculosis control: surveillance, planning, Finance. WHO/CDS/2002.295. World Health Organization, Geneva, Switzerland.

319. Yates, M. D., and J. M. Grange. 1993. A bacteriological survey of tuberculosis due to the human tubercle bacillus (Mycobacterium tuberculosis) in south-east England: 1984-91. Epidemiol. Infect. 110:609-619. [PMC free article] [PubMed] [Google Scholar]

320. Yeremeev, V. V., I. V. Lyadova, B. V. Nikonenko, A. S. Apt, C. Abou-Zeid, J. Inwald, and D. B. Young. 2000. The 19-kD antigen and protective immunity in a murine model of tuberculosis. Clin. Exp. Immunol. 120:274-279. [PMC free article] [PubMed] [Google Scholar]

321. Yeremeev, V. V., G. R. Stewart, O. Neyrolles, K. Skrabal, V. G. Avdienko, A. S. Apt, and D. B. Young. 2000. Deletion of the 19kDa antigen does not alter the protective efficacy of BCG. Tubercle Lung Dis. 80:243-247. [PubMed] [Google Scholar]

322. Young, D., R. Lathigra, R. Hendrix, D. Sweetser, and R. A. Young. 1988. Stress proteins are immune targets in leprosy and tuberculosis. Proc. Natl. Acad. Sci. USA 85:4267-4270. [PMC free article] [PubMed] [Google Scholar]

323. Yuan, Y., and C. E. Barry III. 1996. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tyberculosis. Proc. Natl. Acad. Sci. USA 93:12828-12833. [PMC free article] [PubMed] [Google Scholar]

324. Yuan, Y., D. D. Crane, R. M. Simpson, Y. Zhu, M. J. Hickey, D. R. Sherman, and C. E. Barry III. 1998. The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA 95:9578-9583. [PMC free article] [PubMed] [Google Scholar]

325. Yuan, Y., D. D. Crane, and C. E. Barry III. 1996. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J. Bacteriol. 178:4484-4492. [PMC free article] [PubMed] [Google Scholar]

326. Zahrt, T. C., and V. Deretic. 2000. An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol. 182:3832-3838. [PMC free article] [PubMed] [Google Scholar]

327. Zahrt, T. C., and V. Deretic. 2001. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl. Acad. Sci. USA 98:12706-12711. [PMC free article] [PubMed] [Google Scholar]

328. Zahrt, T. C., J. Song, J. Siple, and V. Deretic. 2001. Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Mol. Microbiol. 39:1174-1185. [PubMed] [Google Scholar]

329. Zugar, A., and F. D. Lowy. 1996. Tuberculosis of the brain, meninges, and the spinal cord, p. 541-556. In W. N. Rom and S. Gary (ed.), Tuberculosis. Little, Brown and Co., Boston, Mass.


Page 2

General classification of M. tuberculosis genes

FunctionNo. of genes% of total% of Total coding capacity
Lipid metabolism2255.79.3
Information pathways2075.26.1
Cell wall and cell processes51713.015.5
Stable RNAs501.30.2
IS elements and bacteriophages1373.42.5
PE and PPE proteins1674.27.1
Intermediary metabolism and respiration87722.024.6
Regulatory proteins1884.74.0
Virulence, detoxification and adaptation912.32.4
Conserved hypothetical function91122.918.4
Proteins of unknown function60715.39.9