When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

Probability means Possibility. It states how likely an event is about to happen. The probability of an event can exist only between 0 and 1 where 0 indicates that event is not going to happen i.e. Impossibility and 1 indicates that it is going to happen for sure i.e. Certainty. 

The higher or lesser the probability of an event, the more likely it is that the event will occur or not respectively. For example – An unbiased coin is tossed once. So the total number of outcomes can be 2 only i.e. either “heads” or “tails”. The probability of both outcomes is equal i.e. 50% or 1/2.

So, the probability of an event is Favorable outcomes/Total number of outcomes. It is denoted with the parenthesis i.e. P(Event).

P(Event) = N(Favorable Outcomes) / N (Total Outcomes)

Note: If the probability of occurring of an event A is 1/3 then the probability of not occurring of event A is 1-P(A) i.e. 1- (1/3) = 2/3

What is Sample Space?

All the possible outcomes of an event are called Sample spaces.

Examples-

  • A six-faced dice is rolled once. So, total outcomes can be 6 and 
    Sample space will be [1, 2, 3, 4, 5, 6]
  • An unbiased coin is tossed, So, total outcomes can be 2 and 
    Sample space will be [Head, Tail]
  • If two dice are rolled together then total outcomes will be 36 and 
    Sample space will be [ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)   (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)    (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)    (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)    (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) 

       (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) ]

Types of Events

Independent Events: If two events (A and B) are independent then their probability will be P(A and B) = P (A ∩ B) = P(A).P(B) i.e. P(A) * P(B)

Example: If two coins are flipped, then the chance of both being tails is 1/2 * 1/2 = 1/4

Mutually exclusive events:

  • If event A and event B can’t occur simultaneously, then they are called mutually exclusive events.
  • If two events are mutually exclusive, then the probability of both occurring is denoted as P (A ∩ B) and 
    P (A and B) = P (A ∩ B) = 0
  • If two events are mutually exclusive, then the probability of either occurring is denoted as P (A ∪ B) P (A or B) = P (A ∪ B)                   = P (A) + P (B) − P (A ∩ B)                   = P (A) + P (B) − 0    

                    = P (A) + P (B)

Example: The chance of rolling a 2 or 3 on a six-faced die is P (2 or 3) = P (2) + P (3) = 1/6 + 1/6 = 1/3

Not Mutually exclusive events: If the events are not mutually exclusive then

P (A or B) = P (A ∪ B) = P (A) + P (B) − P (A and B)

What is Conditional Probability?

For the probability of some event A, the occurrence of some other event B is given. It is written as P (A ∣ B)

P (A ∣ B) = P (A ∩ B) / P (B)

Example- In a bag of 3 black balls and 2 yellow balls (5 balls in total), the probability of taking a black ball is 3/5, and to take a second ball, the probability of it being either a black ball or a yellow ball depends on the previously taken out ball. Since, if a black ball was taken, then the probability of picking a black ball again would be 1/4, since only 2 black and 2 yellow balls would have been remaining, if a yellow ball was taken previously, the probability of taking a black ball will be 3/4.

Solution:

When two dice are rolled together then total outcomes are 36 and Sample space is [ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)     (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)     (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)     (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)     (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) 

   (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) ]

So, pairs with sum 14 are 0.

Total outcomes = 36
Favorable outcomes = 0

Probability of getting the sum of 14 = Favorable outcomes / Total outcomes

                                                        = 0/36 = 0

So, P(sum of 14) = 0

Similar Questions

Question 1: What is the probability of getting the sum of 11 on both dice?

Solution:

When two dice are rolled together then total outcomes are 36 and 
Sample space is [ (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)   (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)   (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

  (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) ]

So, pairs with sum 11 are (5,6) and (6,5) i.e. only 2 pairs

Total outcomes = 36
Favorable outcomes = 2

Probability of getting the sum of 11 = Favorable outcomes / Total outcomes 
                                                         = 2 / 36 = 1/18

So, P(sum of 11) = 1/18.

Question 2: What is the probability of getting the product of 6 on two dice?

Solution:

When two dice are rolled together then total outcomes are 36 and 
Sample space is

[ (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)   (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)  

   (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) ]

So, pairs with product 6 are (1,6) (2,3) (3,2) (6,1)  i.e. total 4 pairs

Total outcomes = 36
Favorable outcomes = 4

Probability of getting the product of 6 = Favorable outcomes / Total outcomes                                                                                                                         = 4/36 = 1/9

So, P(product of 6) = 1/9.

Question 3: What is the probability of getting a pair with an even sum on two dice?

Solution:

When two dice are rolled together then total outcomes are 36 and 
Sample space is [ (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)     (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)   (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)  

  (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) ]

Possible even sums are 2, 4, 6, 8, 10, 12

So, possible pairs with sum 2, 4, 6, 8, 10 and 12 are (1,1) (2,2) (1,3) (3,1) (1,5) (2,4) (4,2) (3,3) (5,1) (2,6) (3,5) (4,4) (5,3) (6,2) (4,6) (5,5) (6,4) (6,6) i.e. total 18 pairs

Total outcomes = 36
Favorable outcomes = 18

Probability of getting the sum of 5 = Favorable outcomes / Total outcomes 
                                                       = 18 / 36 = 1/2

So, P(Even sum) = 1/2.

Probability for rolling two dice with the six sided dots such as 1, 2, 3, 4, 5 and 6 dots in each die.

When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

When two dice are thrown simultaneously, thus number of event can be 62 = 36 because each die has 1 to 6 number on its faces. Then the possible outcomes are shown in the below table.

Probability – Sample space for two dice (outcomes):

When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

Note: 

(i) The outcomes (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) and (6, 6) are called doublets.

(ii) The pair (1, 2) and (2, 1) are different outcomes.

Worked-out problems involving probability for rolling two dice:

1. Two dice are rolled. Let A, B, C be the events of getting a sum of 2, a sum of 3 and a sum of 4 respectively. Then, show that

(i) A is a simple event

(ii) B and C are compound events

(iii) A and B are mutually exclusive

Solution:

Clearly, we haveA = {(1, 1)}, B = {(1, 2), (2, 1)} and C = {(1, 3), (3, 1), (2, 2)}.

(i) Since A consists of a single sample point, it is a simple event.

(ii) Since both B and C contain more than one sample point, each one of them is a compound event.

(iii) Since A ∩ B = ∅, A and B are mutually exclusive.

2. Two dice are rolled. A is the event that the sum of the numbers shown on the two dice is 5, and B is the event that at least one of the dice shows up a 3. Are the two events (i) mutually exclusive, (ii) exhaustive? Give arguments in support of your answer.

Solution:

When two dice are rolled, we have n(S) = (6 × 6) = 36.

Now, A = {(1, 4), (2, 3), (4, 1), (3, 2)}, and

B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (1,3), (2, 3), (4, 3), (5, 3), (6, 3)}

(i) A ∩ B = {(2, 3), (3, 2)} ≠ ∅.

Hence, A and B are not mutually exclusive.

(ii) Also, A ∪ B ≠ S.

Therefore, A and B are not exhaustive events.

More examples related to the questions on the probabilities for throwing two dice.

3. Two dice are thrown simultaneously. Find the probability of:

(i) getting six as a product

(ii) getting sum ≤ 3

(iii) getting sum ≤ 10

(iv) getting a doublet

(v) getting a sum of 8

(vi) getting sum divisible by 5

(vii) getting sum of atleast 11

(viii) getting a multiple of 3 as the sum

(ix) getting a total of atleast 10

(x) getting an even number as the sum

(xi) getting a prime number as the sum

(xii) getting a doublet of even numbers

(xiii) getting a multiple of 2 on one die and a multiple of 3 on the other die

Solution: 

Two different dice are thrown simultaneously being number 1, 2, 3, 4, 5 and 6 on their faces. We know that in a single thrown of two different dice, the total number of possible outcomes is (6 × 6) = 36.

(i) getting six as a product:

Let E1 = event of getting six as a product. The number whose product is six will be E1 = [(1, 6), (2, 3), (3, 2), (6, 1)] = 4

Therefore, probability of getting ‘six as a product’

               Number of favorable outcomes
P(E1) =     Total number of possible outcome       = 4/36       = 1/9

(ii) getting sum ≤ 3:

Let E2 = event of getting sum ≤ 3. The number whose sum ≤ 3 will be E2 = [(1, 1), (1, 2), (2, 1)] = 3

Therefore, probability of getting ‘sum ≤ 3’

               Number of favorable outcomes
P(E2) =     Total number of possible outcome       = 3/36       = 1/12

(iii) getting sum ≤ 10:

Let E3 = event of getting sum ≤ 10. The number whose sum ≤ 10 will be E3 =

[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5),

(6, 1), (6, 2), (6, 3), (6, 4)] = 33

Therefore, probability of getting ‘sum ≤ 10’

               Number of favorable outcomes
P(E3) =     Total number of possible outcome       = 33/36       = 11/12

(iv) getting a doublet: Let E4 = event of getting a doublet. The number which doublet will be E4 = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)] = 6

Therefore, probability of getting ‘a doublet’

               Number of favorable outcomes
P(E4) =     Total number of possible outcome       = 6/36       = 1/6

(v) getting a sum of 8:

Let E5 = event of getting a sum of 8. The number which is a sum of 8 will be E5 = [(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)] = 5

Therefore, probability of getting ‘a sum of 8’

               Number of favorable outcomes
P(E5) =     Total number of possible outcome       = 5/36

(vi) getting sum divisible by 5:

Let E6 = event of getting sum divisible by 5. The number whose sum divisible by 5 will be E6 = [(1, 4), (2, 3), (3, 2), (4, 1), (4, 6), (5, 5), (6, 4)] = 7

Therefore, probability of getting ‘sum divisible by 5’

               Number of favorable outcomes
P(E6) =     Total number of possible outcome       = 7/36

(vii) getting sum of atleast 11:

Let E7 = event of getting sum of atleast 11. The events of the sum of atleast 11 will be E7 = [(5, 6), (6, 5), (6, 6)] = 3

Therefore, probability of getting ‘sum of atleast 11’

               Number of favorable outcomes
P(E7) =     Total number of possible outcome       = 3/36       = 1/12

(viii) getting a multiple of 3 as the sum:

Let E8 = event of getting a multiple of 3 as the sum. The events of a multiple of 3 as the sum will be E8 = [(1, 2), (1, 5), (2, 1), (2, 4), (3, 3), (3, 6), (4, 2), (4, 5), (5, 1), (5, 4), (6, 3) (6, 6)] = 12

Therefore, probability of getting ‘a multiple of 3 as the sum’

               Number of favorable outcomes
P(E8) =     Total number of possible outcome       = 12/36       = 1/3

(ix) getting a total of atleast 10:

Let E9 = event of getting a total of atleast 10. The events of a total of atleast 10 will be E9 = [(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)] = 6

Therefore, probability of getting ‘a total of atleast 10’

               Number of favorable outcomes
P(E9) =     Total number of possible outcome       = 6/36       = 1/6

(x) getting an even number as the sum:

Let E10 = event of getting an even number as the sum. The events of an even number as the sum will be E10 = [(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 3), (3, 1), (3, 5), (4, 4), (4, 2), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)] = 18

Therefore, probability of getting ‘an even number as the sum

               Number of favorable outcomes
P(E10) =     Total number of possible outcome       = 18/36       = 1/2

(xi) getting a prime number as the sum:

Let E11 = event of getting a prime number as the sum. The events of a prime number as the sum will be E11 = [(1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5)] = 15

Therefore, probability of getting ‘a prime number as the sum’

               Number of favorable outcomes
P(E11) =     Total number of possible outcome       = 15/36       = 5/12

(xii) getting a doublet of even numbers:

Let E12 = event of getting a doublet of even numbers. The events of a doublet of even numbers will be E12 = [(2, 2), (4, 4), (6, 6)] = 3

Therefore, probability of getting ‘a doublet of even numbers’

               Number of favorable outcomes
P(E12) =     Total number of possible outcome       = 3/36       = 1/12

(xiii) getting a multiple of 2 on one die and a multiple of 3 on the other die:

Let E13 = event of getting a multiple of 2 on one die and a multiple of 3 on the other die. The events of a multiple of 2 on one die and a multiple of 3 on the other die will be E13 = [(2, 3), (2, 6), (3, 2), (3, 4), (3, 6), (4, 3), (4, 6), (6, 2), (6, 3), (6, 4), (6, 6)] = 11

Therefore, probability of getting ‘a multiple of 2 on one die and a multiple of 3 on the other die’

               Number of favorable outcomes
P(E13) =     Total number of possible outcome       = 11/36

4. Two dice are thrown. Find (i) the odds in favour of getting the sum 5, and (ii) the odds against getting the sum 6.

Solution:

We know that in a single thrown of two die, the total number of possible outcomes is (6 × 6) = 36.

Let S be the sample space. Then, n(S) = 36.

(i) the odds in favour of getting the sum 5:

Let E1 be the event of getting the sum 5. Then,
E1 = {(1, 4), (2, 3), (3, 2), (4, 1)}
⇒ P(E1) = 4
Therefore, P(E1) = n(E1)/n(S) = 4/36 = 1/9
⇒ odds in favour of E1 = P(E1)/[1 – P(E1)] = (1/9)/(1 – 1/9) = 1/8.

(ii) the odds against getting the sum 6:

Let E2 be the event of getting the sum 6. Then,
E2 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
⇒ P(E2) = 5
Therefore, P(E2) = n(E2)/n(S) = 5/36
⇒ odds against E2 = [1 – P(E2)]/P(E2) = (1 – 5/36)/(5/36) = 31/5.

5. Two dice, one blue and one orange, are rolled simultaneously. Find the probability of getting 

(i) equal numbers on both 

(ii) two numbers appearing on them whose sum is 9.

Solution:

The possible outcomes are 

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

Therefore, total number of possible outcomes = 36.

(i) Number of favourable outcomes for the event E

                   = number of outcomes having equal numbers on both dice 

                   = 6    [namely, (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)].

So, by definition, P(E) = \(\frac{6}{36}\)

                                 = \(\frac{1}{6}\)


(ii) Number of favourable outcomes for the event F

           = Number of outcomes in which two numbers appearing on them have the sum 9

            = 4     [namely, (3, 6), (4, 5), (5, 4), (3, 6)].

Thus, by definition, P(F) = \(\frac{4}{36}\)

                                    = \(\frac{1}{9}\).

These examples will help us to solve different types of problems based on probability for rolling two dice.

  • When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

    Moving forward to the theoretical probability which is also known as classical probability or priori probability we will first discuss about collecting all possible outcomes and equally likely outcome. When an experiment is done at random we can collect all possible outcomes

  • When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

    In 10th grade worksheet on probability we will practice various types of problems based on definition of probability and the theoretical probability or classical probability. 1. Write down the total number of possible outcomes when the ball is drawn from a bag containing 5

  • When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

    Probability in everyday life, we come across statements such as: Most probably it will rain today. Chances are high that the prices of petrol will go up. I doubt that he will win the race. The words ‘most probably’, ‘chances’, ‘doubt’ etc., show the probability of occurrence

  • When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

    In math worksheet on playing cards we will solve various types of practice probability questions to find the probability when a card is drawn from a pack of 52 cards. 1. Write down the total number of possible outcomes when a card is drawn from a pack of 52 cards.

  • When two dice are thrown simultaneously What is the probability that the sum of the two is less than 11?

    Practice different types of rolling dice probability questions like probability of rolling a die, probability for rolling two dice simultaneously and probability for rolling three dice simultaneously in rolling dice probability worksheet. 1. A die is thrown 350 times and the

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice

9th Grade Math

From Probability for Rolling Two Dice to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?