What is conservation of mass 8th grade?

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

What is conservation of mass 8th grade?

Encyclopædia Britannica, Inc.

The law of conservation of mass is a fundamental principle of physics. According to this law, matter can be neither created nor destroyed. In other words, the mass of an object or collection of objects never changes, no matter how the parts are rearranged. In an ordinary chemical reaction, the sum of the masses of the reactants (the substances undergoing the change) equals the sum of the masses of the products (the substances resulting from the reaction). For example, the mass of wood and oxygen that disappears in combustion is equal to the mass of water vapor, carbon dioxide, smoke, and ash that appears following the reaction.

Mass is conserved in chemical reactions because the same atoms are present in the reactants as in the products, although they are combined in different ways. For example, calcium (Ca) can react with oxygen (O2) to form the compound calcium oxide (CaO):

2 Ca + O2 → 2 CaO

Notice that the reactants consist of 2 atoms of calcium and 1 molecule of oxygen, which contains 2 atoms of oxygen. The product is 2 molecules of calcium oxide, each consisting of 1 calcium atom and 1 oxygen atom. The number and types of atoms before the reaction—2 calcium atoms and 2 oxygen atoms—is equal to the number and types of atoms in the product—2 calcium atoms and 2 oxygen atoms. The atoms are arranged differently in the product compared to the reactants, but the same amount and type of mass is present before and after the reaction.

What is conservation of mass 8th grade?

Encyclopædia Britannica, Inc.

Mass also in conserved when matter undergoes physical changes, such as changes of state. For example, water is made up of hydrogen and oxygen atoms, with a chemical formula of H2O. Water can exist in three states—solid (ice), liquid, and gas (water vapor, or steam). The mass of a sample of water will remain the same regardless of a change of state. If 1 gram of ice cubes is melted, it will produce 1 gram of liquid water and, as the temperature increases, 1 gram of water vapor:

1g H2Oice = 1g H2Owater = 1g H2Osteam

Furthermore, the number of hydrogen and oxygen atoms in the ice would equal the number of hydrogen and oxygen atoms in the liquid water and the water vapor.

What is conservation of mass 8th grade?

Encyclopædia Britannica, Inc.

The law of the conservation of mass also applies to the movement of matter through living systems. As nutrients move through the biosphere, elements are continuously transferred between organisms and their environment through biogeochemical cycles, such as the nitrogen cycle and the phosphorus cycle.

The movement of carbon through the carbon cycle provides a good example of how mass is conserved in living systems. The source of the carbon found in living matter is carbon dioxide that is in the air or dissolved in water. In terrestrial environments, plants use carbon dioxide from the air to make carbohydrates through photosynthesis. These compounds move to herbivores—organisms that eat plants—and then to organisms that eat the herbivores. To gain energy, organisms break down carbohydrates through cellular respiration, releasing carbon dioxide back into the atmosphere. The carbon in animal wastes—and in the tissues of dead organisms—is released into the environment through decomposition. Some carbon returns to the atmosphere as carbon dioxide. However, some carbon is stored underground. The carbon in fossil fuels, such as coal and oil, derives from the decayed tissues of plants and animals deposited millions of years ago.This carbon returns to the atmosphere through combustion when these fuels are burned. Combustion also accounts for carbon dioxide released when vegetation is burned and when volcanoes erupt.

Carbon also moves through aquatic ecosystems, where carbon dioxide dissolved in water is taken up by algae and phytoplankton for photosynthesis and returned to the water through cellular respiration. Carbon deposited in bottom sediments from the decayed remains of organisms helps form mineral compounds that some aquatic animals, such as oysters, incorporate into their shells.

The carbon cycle shows that the same atoms of carbon may—over the course of eons—move repeatedly between organisms, the atmosphere, the soil, and the oceans. Carbon released as carbon dioxide by an animal may remain in the atmosphere for 5 or 10 years before being taken up by another organism, or the carbon may cycle almost immediately back into a neighboring plant and be used during photosynthesis. Even when organisms die, the carbon in their tissues is not destroyed, though it may change form as it cycles through the environment.

The law of conservation of mass is not always correct, however. Albert Einstein’s special theory of relativity, introduced in 1905, showed that mass and energy are equivalent, so mass can be converted into energy and vice versa. Some conversion between mass and energy occurs in both chemical and nuclear reactions so that the products generally have smaller or greater mass than the reactants. The difference in mass is so slight for ordinary chemical reactions that the law of conservation of mass is still considered to hold true. In nuclear reactions, however, the conversion of mass into energy is significant enough to invalidate the law. In light of this discovery, the law of conservation of mass was combined with the law of conservation of energy to create the law of conservation of mass-energy.

The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed. For example, the carbon atom in coal becomes carbon dioxide when it is burned. The carbon atom changes from a solid structure to a gas but its mass does not change. Similarly, the law of conservation of energy states that the amount of energy is neither created nor destroyed. For example, when you roll a toy car down a ramp and it hits a wall, the energy is transferred from kinetic energy to potential energy.

Teach about the conservation of energy and mass with these classroom resources.

The law of conservation of mass states that mass within a closed system remains the same over time. Discover more about the law of conservation of mass, including its importance, equations, and some examples of this law in action.

What is the Law of Conservation of Mass?

The law of conservation of mass states that

“The mass in an isolated system can neither be created nor be destroyed but can be transformed from one form to another”.

According to the law of conservation of mass, the mass of the reactants must be equal to the mass of the products for a low energy thermodynamic process.

It is believed that there are a few assumptions from classical mechanics which define mass conservation. Later the law of conservation of mass was modified with the help of quantum mechanics and special relativity that energy and mass are one conserved quantity. In 1789, Antoine Laurent Lavoisier discovered the law of conservation of mass.

Law of conservation of mass can be expressed in the differential form using the continuity equation in fluid mechanics and continuum mechanics as:

\(\begin{array}{l}\frac{\partial \rho }{\partial t}+\bigtriangledown (\rho v)=0\end{array} \)

Where,

  • ρ is the density
  • t is the time
  • v is the velocity
  • ▽ is the divergence

Related Articles:

  • Law of Conservation of Momentum Derivation
  • Mass And Weight

  • Combustion process: Burning of wood is a conservation of mass as the burning of wood involves Oxygen, Carbon dioxide, water vapor and ashes.
  • Chemical reactions: To get one molecule of H2O (water) with the molecular weight of 10, Hydrogen with molecular weight 2 is added with Oxygen whose molecular weight is 8, thereby conserving the mass.

Q1. 10 grams of calcium carbonate (CaCO3) produces 3.8 grams of carbon dioxide (CO2) and 6.2 grams of calcium oxide (CaO). Represent this reaction in terms of law of conservation of mass.
Ans: According to law of conservation of mass: Mass of reactants = Mass of products

∴ 10 gram of CaCO3 = 3.8 grams of CO2 + 6.2 grams of CaO


10 grams of reactant = 10 grams of products

Hence, it is proved that the law of conservation of mass is followed by the above reaction.

During a chemical reaction, atoms are neither created nor destroyed. The atoms of the reactants are just rearranged to form products. Hence, there is no change in mass in a chemical reaction.

According to the law of conservation of mass, during any physical or chemical change, the matter is neither created nor destroyed. However, it may change from one form to another. Below, we have listed an experiment that will help you verify the law of conservation of mass. Requirements: H-shaped tube, also known as Landolt’s tube; Sodium chloride solution; silver nitrate solution.

Procedure: Sodium chloride solution is taken in one limb of the H-tube and silver nitrate solution in the other limb as shown in the figure. Both the limbs are now sealed and weighed. Now the tubes are averted so that the solutions can mix up together and react chemically. The reaction takes place and a white precipitate of silver chloride is obtained. The tube is weighed after the reaction has taken place. The mass of the tube is found to be exactly the same as the mass obtained before inverting the tube. This experiment clearly verifies the law of conservation of mass.

The ultimate source of energy in our present universe is the Big Bang. All the energy was created at the beginning of time and as the universe grew several stages of particulate matter developed, produced from that energy. By the time of the Modern Universe, the energy was distributed either into mass, or kinetic energy or chemical energy in lumps of matter, or radiant energy. The masses are classified into galaxies and stars within them. The sun is one of those stars and got the energy from the primordial Big Bang.

Stay tuned with BYJU’S for more such interesting articles. Also, register to “BYJU’S – The Learning App” for loads of interactive, engaging Physics-related videos and an unlimited academic assist.

What happens to the mass of a burned object?

What is conservation of mass 8th grade?

What is conservation of mass 8th grade?

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button
Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

0 out of 0 arewrong

0 out of 0 are correct

0 out of 0 are Unattempted

View Quiz Answers and Analysis