Why is DNA replication semi-conservative?

1. Soyfer VN. 2001. The consequences of political dictatorship for Russian science. Nat Rev Genet 2:723–729. doi: 10.1038/35088598. [PubMed] [CrossRef] [Google Scholar]

2. Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158. doi: 10.1084/jem.79.2.137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Franklin RE, Gosling RG. 1953. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172:156–157. doi: 10.1038/172156a0. [PubMed] [CrossRef] [Google Scholar]

4. Watson JD, Crick FH. 1953. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738. doi: 10.1038/171737a0. [PubMed] [CrossRef] [Google Scholar]

5. Meselson M, Stahl FW. 1958. The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44:671–682. doi: 10.1073/pnas.44.7.671. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Levinthal C. 1956. The mechanism of DNA replication and genetic recombination in phage. Proc Natl Acad Sci U S A 42:394–404. doi: 10.1073/pnas.42.7.394. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, Deem A, Ira G, Haber JE, Lobachev KS, Malkova A. 2013. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502:389–392. doi: 10.1038/nature12584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Fulton C. 1965. Continuous chromosome transfer in Escherichia coli. Genetics 52:55–74. [PMC free article] [PubMed] [Google Scholar]

9. Gilbert W, Dressler D. 1968. DNA replication: the rolling circle model. Cold Spring Harb Symp Quant Biol 33:473–484. doi: 10.1101/SQB.1968.033.01.055. [PubMed] [CrossRef] [Google Scholar]

10. Stahl FW. 1979. Symposium on DNA replication and recombination. Summary. Cold Spring Harb Symp Quant Biol 43:1353–1356. doi: 10.1101/SQB.1979.043.01.154. [PubMed] [CrossRef] [Google Scholar]

11. Marinus MG, Lobner-Olesen A. 2014. DNA methylation. EcoSal Plus 6. doi: 10.1128/ecosalplus.ESP-0003-2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P. 2010. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A 107:16066–16071. doi: 10.1073/pnas.1010662107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Pillon MC, Babu VM, Randall JR, Cai J, Simmons LA, Sutton MD, Guarne A. 2015. The sliding clamp tethers the endonuclease domain of MutL to DNA. Nucleic Acids Res 43:10746–10759. doi: 10.1093/nar/gkv918. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Levin M, Klar AJ, Ramsdell AF. 2016. Introduction to provocative questions in left-right asymmetry. Philos Trans R Soc Lond B Biol Sci 371:20150399. doi: 10.1098/rstb.2015.0399. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R. 2006. Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 28:399–412. doi: 10.1002/bies.20389. [PubMed] [CrossRef] [Google Scholar]

16. Raine DJ, Norris V. 2007. Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J Theor Biol 246:176–185. doi: 10.1016/j.jtbi.2006.12.019. [PubMed] [CrossRef] [Google Scholar]

17. Norris V, Amar P. 2012. Chromosome replication in Escherichia coli: life on the scales. Life (Basel) 2:286–312. doi: 10.3390/life2040286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Norris V, Blaauwen TD, Doi RH, Harshey RM, Janniere L, Jiménez-Sánchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M, Skarstad JK, Thellier M. 2007. Toward a hyperstructure taxonomy. Annu Rev Microbiol 61:309–329. doi: 10.1146/annurev.micro.61.081606.103348. [PubMed] [CrossRef] [Google Scholar]

19. Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M. 2008. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7:299–307. doi: 10.1074/mcp.M700311-MCP200. [PubMed] [CrossRef] [Google Scholar]

20. Gupta M, Sajid A, Sharma K, Ghosh S, Arora G, Singh R, Nagaraja V, Tandon V, Singh Y. 2014. HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J Bacteriol 196:2646–2657. doi: 10.1128/JB.01625-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Sakatos A, Babunovic GH, Chase MR, Dills A, Leszyk J, Rosebrock T, Bryson B, Fortune SM. 2018. Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. Sci Adv 4:eaao1478. doi: 10.1126/sciadv.aao1478. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Rajagopalan K, Dworkin J. 2018. Identification and biochemical characterization of a novel PP2C-like Ser/Thr phosphatase in E. coli. J Bacteriol 200:e00225-18. doi: 10.1128/JB.00225-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Freestone P, Grant S, Trinei M, Onoda T, Norris V. 1998. Protein phosphorylation in Escherichia coli L. form NC-7. Microbiology 144:3289–3295. doi: 10.1099/00221287-144-12-3289. [PubMed] [CrossRef] [Google Scholar]

24. Reusch R, Shabalin O, Crumbaugh A, Wagner R, Schroder O, Wurm R. 2002. Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett 527:319–322. doi: 10.1016/S0014-5793(02)03236-2. [PubMed] [CrossRef] [Google Scholar]

25. Lee AT, Cerami A. 1987. Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo. Proc Natl Acad Sci U S A 84:8311–8314. doi: 10.1073/pnas.84.23.8311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Oehler S, Muller-Hill B. 2010. High local concentration: a fundamental strategy of life. J Mol Biol 395:242–253. doi: 10.1016/j.jmb.2009.10.056. [PubMed] [CrossRef] [Google Scholar]

27. Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 2013. Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–515. doi: 10.1038/nature11989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Merrikh H. 2017. Spatial and temporal control of evolution through replication-transcription conflicts. Trends Microbiol 25:515–521. doi: 10.1016/j.tim.2017.01.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Merrikh CN, Merrikh H. 2018. Gene inversion potentiates bacterial evolvability and virulence. Nat Commun 9:4662. doi: 10.1038/s41467-018-07110-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Omont N, Kepes F. 2004. Transcription/replication collisions cause bacterial transcription units to be longer on the leading strand of replication. Bioinformatics 20:2719–2725. doi: 10.1093/bioinformatics/bth317. [PubMed] [CrossRef] [Google Scholar]

31. Lang KS, Merrikh H. 2018. The clash of macromolecular titans: replication-transcription conflicts in bacteria. Annu Rev Microbiol 72:71–88. doi: 10.1146/annurev-micro-090817-062514. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Junier I, Martin O, Kepes F. 2010. Spatial and topological organization of DNA chains induced by gene co-localization. PLoS Comput Biol 6:e1000678. doi: 10.1371/journal.pcbi.1000678. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Rocha EP, Fralick J, Vediyappan G, Danchin A, Norris V. 2003. A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49:895–903. doi: 10.1046/j.1365-2958.2003.03606.x. [PubMed] [CrossRef] [Google Scholar]

34. Khlebodarova TM, Likhoshvai VA. 2018. Persister cells–a plausible outcome of neutral coevolutionary drift. Sci Rep 8:14309. doi: 10.1038/s41598-018-32637-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Gangwe Nana GY, Ripoll C, Cabin-Flaman A, Gibouin D, Delaune A, Janniere L, Grancher G, Chagny G, Loutelier-Bourhis C, Lentzen E, Grysan P, Audinot JN, Norris V. 2018. Division-based, growth rate diversity in bacteria. Front Microbiol 9:849. doi: 10.3389/fmicb.2018.00849. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW, Manalis SR. 2010. Using buoyant mass to measure the growth of single cells. Nat Methods 7:387–390. doi: 10.1038/nmeth.1452. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, Ebmeier SE, Jacobs-Wagner C. 2014. A constant size extension drives bacterial cell size homeostasis. Cell 159:1433–1446. doi: 10.1016/j.cell.2014.11.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S. 2015. Cell-size control and homeostasis in bacteria. Curr Biol 25:385–391. doi: 10.1016/j.cub.2014.12.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Wallden M, Fange D, Lundius EG, Baltekin O, Elf J. 2016. The synchronization of replication and division cycles in individual E. coli cells. Cell 166:729–739. doi: 10.1016/j.cell.2016.06.052. [PubMed] [CrossRef] [Google Scholar]

40. Kauffman S. 1996. At home in the universe, the search for the laws of complexity. Penguin, London, England. [Google Scholar]

41. Norris V, Kepes F, Amar P, Koch I, Janniere L. 2017. Hypothesis: local variations in the speed of individual DNA replication forks determine the phenotype of daughter cells. Med Res Arch 5:1–18. [Google Scholar]

42. Chatre L, Ricchetti M. 2013. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging. J Cell Sci 126:914–926. doi: 10.1242/jcs.114322. [PubMed] [CrossRef] [Google Scholar]

43. Yasukawa T, Kang D. 2018. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 164:183–193. doi: 10.1093/jb/mvy058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Norris V, Madsen MS. 1995. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J Mol Biol 253:739–748. doi: 10.1006/jmbi.1995.0587. [PubMed] [CrossRef] [Google Scholar]

45. de Crécy-Lagard VA, Bellalou J, Mutzel R, Marlière P. 2001. Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli. BMC Biotechnol 1:10. doi: 10.1186/1472-6750-1-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

Why is DNA replication semi-conservative?

Hyperstructures based on coupled transcription-translation. (A) Formation of a simple transertion hyperstructure due to the coupled transcription, translation, and insertion of nascent proteins into membrane. (B) Formation of a simple transembly hyperstructure due to the coupled transcription, translation, and assembly of nascent proteins in the cytoplasm.

  • Why is DNA replication semi-conservative?
  • Why is DNA replication semi-conservative?

Click on the image to see a larger version.