Which of the following best describes the contraction of the cardiac cells from the electrical discharge?

Tachyarrhythmias may be divided into 4 groups, defined by the QRS complexes:

  • Visibly regular vs irregular

  • Narrow vs wide QRS complexes

Irregular, narrow QRS complex tachyarrhythmias include the following 4 rhythms. Differentiation is based on atrial ECG signals, which are best seen in the longer pauses between QRS complexes.

  • True atrial tachycardia with variable AV conduction: Regular, discrete, uniform, abnormal atrial signals with intervening isoelectric periods (usually at rates < 250 beats/minute)

Irregular, wide QRS complex tachyarrhythmias include

  • The above 4 irregular, narrow atrial tachyarrhythmias conducted with either bundle branch block or ventricular preexcitation

  • Polymorphic ventricular tachycardia (VT)

Differentiation is based on atrial ECG signals and the presence in polymorphic VT of a very rapid ventricular rate (> 250 beats/minute).

Regular, narrow QRS complex tachyarrhythmias include

Vagal maneuvers or pharmacologic AV nodal blockade can help distinguish among these tachycardias. With these maneuvers, sinus tachycardia is not terminated, but it slows or AV block develops, disclosing normal P waves. Similarly, atrial flutter and true atrial tachycardia are usually not terminated, but AV block discloses flutter waves or abnormal P waves. The most common forms of paroxysmal SVT (AV nodal reentry and orthodromic reciprocating tachycardia) must terminate if AV block occurs.

Regular, wide QRS complex tachyarrhythmias include

  • The above 4 regular, narrow QRS complex tachyarrhythmias conducted with bundle branch block or ventricular preexcitation

  • Assume a regular, wide-complex tachyarrhythmia is ventricular tachycardia until proven otherwise.

  • In V1, monophasic R, or QR, or RS

  • In V6, R/S < 1 or monophasic R or QR

  • In V1, R > 30 milliseconds wide or RS > 60 milliseconds wide

AV = atrioventricular; LBBB = left bundle branch block; msec = millisecond; RBBB = right bundle branch block; VT = ventricular tachycardia.

1. Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100:338–69. [PubMed] [Google Scholar]

2. Lakatta EG. A paradigm shift for the heart’s pacemaker. Heart Rhythm. 2010;7:559–64. [PMC free article] [PubMed] [Google Scholar]

3. DiFrancesco D. The pacemaker current If plays an important role in regulating SA node pacemaker activity. Cardiovasc Res. 1995;30:307–8. [PubMed] [Google Scholar]

4. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22. [PMC free article] [PubMed] [Google Scholar]

5. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971;29:437–45. [PubMed] [Google Scholar]

6. Tan AY, Zhou S, Ogawa M, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118:916–25. [PMC free article] [PubMed] [Google Scholar]

7. Ogawa M, Zhou S, Tan AY, et al. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol. 2007;50:335–43. [PubMed] [Google Scholar]

8. Schulze-Bahr E, Neu A, Friederich P, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111:1537–45. [PMC free article] [PubMed] [Google Scholar]

9. Nof E, Luria D, Brass D, et al. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116:463–70. [PubMed] [Google Scholar]

10. Zicha S, Fernandez-Velasco M, Lonardo G, et al. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res. 2005;66:472–81. [PubMed] [Google Scholar]

11. Laish-Farkash A, Marek D, Brass D, et al. A novel mutation in the HCN4 gene causes familial sinus bradycardia in two unrelated Moroccan families [abstract] Heart Rhythm. 2008;5S:S275. [Google Scholar]

12. Laish-Farkash A, Glikson M, Brass D, et al. A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. J Cardiovasc Electrophysiol. in press. [PMC free article] [PubMed] [Google Scholar]

13. Nof E, Antzelevitch C, Glickson M. The contribution of HCN4 to normal sinus nose function in humans and animal models. Pacing Clin Electrophysiol. 2010;33:100–6. [PMC free article] [PubMed] [Google Scholar]

14. Wit AL, Rosen MR. Afterdepolarizations and triggered activity: distinction from automaticity as an arrhythmogenic mechanism. In: Fozzard HA, Haber E, Jenning RB, et al., editors. The heart and cardiovascular system. New York: Raven Press; 1992. pp. 2113–64. [Google Scholar]

15. Zhang L, Benson DW, Tristani-Firouzi M, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005;111:2720–6. [PubMed] [Google Scholar]

16. Tsuboi M, Antzelevitch C. Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7) Heart Rhythm. 2006;3:328–35. [PMC free article] [PubMed] [Google Scholar]

17. Barajas-Martínez H, Hu D, Ontiverod G, et al. Biophysical characterization of a novel KCNJ2 mutation associated with Andersen-Tawil syndrome and CPVT mimicry [abstract] Biophys J. 2009;96:260a. [Google Scholar]

18. Tristani-Firouzi M. Andersen-Tawil syndrome: an ever-expanding phenotype? Heart Rhythm. 2006;3:1351–2. [PubMed] [Google Scholar]

19. Tristani-Firouzi M, Etheridge SP. Kir 2.1 channelopathies: the Andersen-Tawil syndrome. Pflugers Arch. in press. [PubMed] [Google Scholar]

20. Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome) J Clin Invest. 2002;110:381–8. [PMC free article] [PubMed] [Google Scholar]

21. Vassalle M. The relationship among cardiac pacemakers. Overdrive suppression. Circ Res. 1977;41:269–77. [PubMed] [Google Scholar]

22. Gadsby DC, Cranefield PF. Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol. 1979;73:819–37. [PMC free article] [PubMed] [Google Scholar]

23. Jalife J, Moe GK. A biological model of parasystole. Am J Cardiol. 1979;43:761–72. [PubMed] [Google Scholar]

24. Jalife J, Antzelevitch C, Moe GK. The case for modulated parasystole. Pacing Clin Electrophysiol. 1982;5:911–26. [PubMed] [Google Scholar]

25. Nau GJ, Aldariz AE, Acunzo RS, et al. Modulation of parasystolic activity by nonparasystolic beats. Circulation. 1982;66:462–9. [PubMed] [Google Scholar]

26. Antzelevitch C, Bernstein MJ, Feldman HN, et al. Parasystole, reentry, and tachycardia: a canine preparation of cardiac arrhythmias occurring across inexcitable segments of tissue. Circulation. 1983;68:1101–15. [PubMed] [Google Scholar]

27. Jalife J, Moe GK. Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res. 1976;39:801–8. [PubMed] [Google Scholar]

28. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350:1013–22. [PubMed] [Google Scholar]

29. Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259:59–69. [PubMed] [Google Scholar]

30. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol. 1990;258:H1796–805. [PubMed] [Google Scholar]

31. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol. 1998;9:934–48. [PubMed] [Google Scholar]

32. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. 1995;76:351–65. [PubMed] [Google Scholar]

33. Zygmunt AC, Eddlestone GT, Thomas GP, et al. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol. 2001;281:H689–97. [PubMed] [Google Scholar]

34. Burashnikov A, Antzelevitch C. Prominent IKs in epicardium and endocardium contributes to development of transmural dispersion of repolarization but protects against development of early afterdepolarizations. J Cardiovasc Electrophysiol. 2002;13:172–7. [PubMed] [Google Scholar]

35. Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. Curr Opin Cardiol. 2010;25:29–36. [PMC free article] [PubMed] [Google Scholar]

36. Ferrier GR, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res. 1973;32:600–9. [PubMed] [Google Scholar]

37. Rosen MR, Gelband H, Merker C, et al. Mechanisms of digitalis toxicity—effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation. 1973;47:681–9. [PubMed] [Google Scholar]

38. Saunders JH, Ferrier GR, Moe GK. Conduction block associated with transient depolarizations induced by acetylstrophanthidin in isolated canine Purkinje fibers. Circ Res. 1973;32:610–7. [PubMed] [Google Scholar]

39. Rozanski GJ, Lipsius SL. Electrophysiology of functional subsidiary pacemakers in canine right atrium. Am J Physiol. 1985;249:H594–603. [PubMed] [Google Scholar]

40. Wit AL, Cranefield PF. Triggered and automatic activity in the canine coronary sinus. Circ Res. 1977;41:435–45. [PubMed] [Google Scholar]

41. Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal-hypertension. Circ Res. 1981;48:720–7. [PubMed] [Google Scholar]

42. Vermeulen JT, McGuire MA, Opthof T, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res. 1994;28:1547–54. [PubMed] [Google Scholar]

43. Lazzara R, El-Sherif N, Scherlag BJ. Electrophysiological properties of canine Purkinje cells in one-day-old myocardial infarction. Circ Res. 1973;33:722–34. [PubMed] [Google Scholar]

44. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200. [PubMed] [Google Scholar]

45. Wehrens XH, Lehnart SE, Reiken SR, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science. 2004;304:292–6. [PubMed] [Google Scholar]

46. Nam GB, Burashnikov A, Antzelevitch C. Cellular mechanisms underlying the development of catecholaminergic ventricular tachycardia. Circulation. 2005;111:2727–33. [PMC free article] [PubMed] [Google Scholar]

47. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63. [PubMed] [Google Scholar]

48. Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation. 2003;107:2355–60. [PubMed] [Google Scholar]

49. Burashnikov A, Antzelevitch C. Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation. Pacing Clin Electrophysiol. 2006;29:290–5. [PMC free article] [PubMed] [Google Scholar]

50. Watanabe I, Okumura Y, Ohkubo K, et al. Steady-state and nonsteady-state action potentials in fibrillating canine atrium: alternans of action potential and late phase 3 early afterdepolarization as a precursor of atrial fibrillation [abstract] Heart Rhythm. 2005;2:S259. [Google Scholar]

51. Patterson E, Po SS, Scherlag BJ, et al. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31. [PubMed] [Google Scholar]

52. Ogawa M, Morita N, Tang L, et al. Mechanisms of recurrent ventricular fibrillation in a rabbit model of pacing-induced heart failure. Heart Rhythm. 2009;6:784–92. [PMC free article] [PubMed] [Google Scholar]

53. Mayer AG. Rhythmical pulsations is scyphomedusae. Washington, DC: Publication 47 of the Carnegie Institute; 1906. pp. 1–62. [Google Scholar]

54. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can. 1914;8:43–52. [Google Scholar]

55. Mines GR. On dynamic equilibrium in the heart. J Physiol. 1913;46:350–83. [PMC free article] [PubMed] [Google Scholar]

56. Garrey WE. The nature of fibrillatory contraction of the heart—its relation to tissue mass and form. Am J Physiol. 1914;33:397–414. [Google Scholar]

57. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res. 1973;33:54–62. [PubMed] [Google Scholar]

58. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41:9–18. [PubMed] [Google Scholar]

59. Weiner N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex. 1946;16:205–65. [PubMed] [Google Scholar]

60. Davidenko JM, Cohen L, Goodrow RJ, et al. Quinidine-induced action potential prolongation, early afterdepolarizations, and triggered activity in canine Purkinje fibers. Effects of stimulation rate, potassium, and magnesium. Circulation. 1989;79:674–86. [PubMed] [Google Scholar]

61. Jalife J, Delmar M, Davidenko JM, et al. Basic cardiac electrophysiology for the clinician. Armonk (NY): Futura Publishing; 1999. [Google Scholar]

62. Gray RA, Jalife J, Panfilov AV, et al. Mechanisms of cardiac fibrillation. Science. 1995;270:1222–3. [PubMed] [Google Scholar]

63. Garfinkel A, Kim YH, Voroshilovsky O, et al. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci U S A. 2000;97:6061–6. [PMC free article] [PubMed] [Google Scholar]

64. El-Sherif N, Smith RA, Evans K. Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res. 1981;49:255–65. [PubMed] [Google Scholar]

65. Valderrabano M, Kim YH, Yashima M, et al. Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated swine right ventricles: insights into the transition dynamics and implications for the critical mass. J Am Coll Cardiol. 2000;36:2000–8. [PubMed] [Google Scholar]

66. Chen PS, Wolf PD, Dixon EG, et al. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988;62:1191–209. [PubMed] [Google Scholar]

67. Wit AL, Cranefield PF, Hoffman BF. Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res. 1972;30:11–22. [PubMed] [Google Scholar]

68. Schmitt FO, Erlanger J. Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions. Am J Physiol. 1928;87:326–47. [Google Scholar]

69. Antzelevitch C, Jalife J, Moe GK. Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation. 1980;61:182–91. [PubMed] [Google Scholar]

70. Antzelevitch C, Moe GK. Electrotonically-mediated delayed conduction and reentry in relation to “slow responses” in mammalian ventricular conducting tissue. Circ Res. 1981;49:1129–39. [PubMed] [Google Scholar]

71. Antzelevitch C. Clinical applications of new concepts of parasystole, reflection, and tachycardia. Cardiol Clin. 1983;1:39–50. [PubMed] [Google Scholar]

72. Rozanski GJ, Jalife J, Moe GK. Reflected reentry in nonhomogeneous ventricular muscle as a mechanism of cardiac arrhythmias. Circulation. 1984;69:163–73. [PubMed] [Google Scholar]

73. Lukas A, Antzelevitch C. Reflected reentry, delayed conduction, and electrotonic inhibition in segmentally depressed atrial tissues. Can J Physiol Pharmacol. 1989;67:757–64. [PubMed] [Google Scholar]

74. Davidenko JM, Antzelevitch C. The effects of milrinone on action potential characteristics, conduction, automaticity, and reflected reentry in isolated myocardial fibers. J Cardiovasc Pharmacol. 1985;7:341–9. [PubMed] [Google Scholar]

75. Rosenthal JE, Ferrier GR. Contribution of variable entrance and exit block in protected foci to arrhythmogenesis in isolated ventricular tissues. Circulation. 1983;67:1–8. [PubMed] [Google Scholar]

76. Antzelevitch C, Lukas A. Reflection and circus movement reentry in isolated atrial and ventricular tissues. In: Dangman KH, Miura DS, editors. Electrophysiology and pharmacology of the heart. A clinical guide. New York: Marcel Dekker; 1991. pp. 251–75. [Google Scholar]

77. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation. 1993;87:562–72. [PubMed] [Google Scholar]

78. Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res. 1996;32:593–603. [PubMed] [Google Scholar]

79. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation. 1993;88:1177–89. [PubMed] [Google Scholar]

80. Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2010;7:549–58. [PMC free article] [PubMed] [Google Scholar]

81. Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29:1130–59. [PMC free article] [PubMed] [Google Scholar]

82. Antzelevitch C, Sicouri S, Litovsky SH, et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res. 1991;69:1427–49. [PubMed] [Google Scholar]

83. Antzelevitch C, Sicouri S, Lukas A, et al. Clinical implications of electrical heterogeneity in the heart: the electrophysiology and pharmacology of epicardial, M, and endocardial cells. In: Podrid PJ, Kowey PR, editors. Cardiac arrhythmia: mechanism, diagnosis and management. Baltimore (MD): William & Wilkins; 1995. pp. 88–107. [Google Scholar]

84. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988;62:116–26. [PubMed] [Google Scholar]

85. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72:671–87. [PubMed] [Google Scholar]

86. Furukawa T, Myerburg RJ, Furukawa N, et al. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res. 1990;67:1287–91. [PubMed] [Google Scholar]

87. Sicouri S, Quist M, Antzelevitch C. Evidence for the presence of M cells in the guinea pig ventricle. J Cardiovasc Electrophysiol. 1996;7:503–11. [PubMed] [Google Scholar]

88. Stankovicova T, Szilard M, De Scheerder I, et al. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res. 2000;45:952–60. [PubMed] [Google Scholar]

89. McIntosh MA, Cobbe SM, Smith GL. Heterogeneous changes in action potential and intracellular Ca2+in left ventricular myocyte sub-types from rabbits with heart failure. Cardiovasc Res. 2000;45:397–409. [PubMed] [Google Scholar]

90. Wettwer E, Amos GJ, Posival H, et al. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res. 1994;75:473–82. [PubMed] [Google Scholar]

91. Nabauer M, Beuckelmann DJ, Uberfuhr P, et al. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93:168–77. [PubMed] [Google Scholar]

92. Di Diego JM, Sun ZQ, Antzelevitch C. Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271:H548–61. [PubMed] [Google Scholar]

93. Volders PG, Sipido KR, Carmeliet E, et al. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999;99:206–10. [PubMed] [Google Scholar]

94. Takano M, Noma A. Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflugers Arch. 1992;420:223–6. [PubMed] [Google Scholar]

95. Zygmunt AC. Intracellular calcium activates chloride current in canine ventricular myocytes. Am J Physiol. 1994;267:H1984–95. [PubMed] [Google Scholar]

96. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res. 1991;68:1729–41. [PubMed] [Google Scholar]

97. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium: in vitro and in vivo correlations. Circulation. 1996;94:1981–8. [PubMed] [Google Scholar]

98. Zygmunt AC, Goodrow RJ, Antzelevitch C. INaCa contributes to electrical heterogeneity within the canine ventricle. Am J Physiol Heart Circ Physiol. 2000;278:H1671–8. [PubMed] [Google Scholar]

99. Brahmajothi MV, Morales MJ, Rasmusson RL, et al. Heterogeneity in K+ channel transcript expression detected in isolated ferret cardiac myocytes. Pacing Clin Electrophysiol. 1997;20:388–96. [PubMed] [Google Scholar]

100. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20:1391–6. [PubMed] [Google Scholar]

101. Schulze-Bahr E, Eckardt L, Breithardt G, et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat. 2003;21:651–2. [PubMed] [Google Scholar]

102. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–9. [PMC free article] [PubMed] [Google Scholar]

103. London B, Michalec M, Mehdi H, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116:2260–8. [PMC free article] [PubMed] [Google Scholar]

104. Watanabe H, Koopmann TT, Le Scouarnec S, et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8. [PMC free article] [PubMed] [Google Scholar]

105. Hu D, Barajas-Martinez H, Burashnikov E, et al. A mutation in the β3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ Cardiovasc Genet. 2009;2:270–8. [PMC free article] [PubMed] [Google Scholar]

106. Burashnikov E, Pfeifer R, Barajas-Martinez H, et al. Mutations in the cardiac L-type calcium channel associated J wave syndrome and sudden cardiac death. Heart Rhythm. in press. [PMC free article] [PubMed] [Google Scholar]

107. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST segment elevation. Circulation. 1999;100:1660–6. [PubMed] [Google Scholar]

108. Antzelevitch C, Shimizu W, Yan GX. Electrical heterogeneity and the development of arrhythmias. In: Olsson SB, Yuan S, Amlie JP, editors. Dispersion of ventricular repolarization: state of the art. Armonk (NY): Futura Publishing Company, Inc; 2000. pp. 3–21. [Google Scholar]

109. Yan GX, Lankipalli RS, Burke JF, et al. Ventricular repolarization components on the electrocardiogram: cellular basis and clinical significance. J Am Coll Cardiol. 2003;42:401–9. [PubMed] [Google Scholar]

110. Shimizu W, Antzelevitch C, Suyama K, et al. Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1320–9. [PubMed] [Google Scholar]

111. Brugada R, Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000;101:510–5. [PubMed] [Google Scholar]

112. Morita H, Morita ST, Nagase S, et al. Ventricular arrhythmia induced by sodium channel blocker in patients with Brugada syndrome. J Am Coll Cardiol. 2003;42:1624–31. [PubMed] [Google Scholar]

113. Gussak I, Antzelevitch C, Bjerregaard P, et al. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J Am Coll Cardiol. 1999;33:5–15. [PubMed] [Google Scholar]

114. Postema PG, van Dessel PF, Kors JA, et al. Local depolarization abnormalities are the dominant pathophysiologic mechanism for type 1 electrocardiogram in Brugada syndrome: a study of electrocardiograms, vectorcardiograms, and body surface potential maps during ajmaline provocation. J Am Coll Cardiol. 2010;55:789–97. [PubMed] [Google Scholar]

115. Wilde AA, Postema PG, Di Diego JM, et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol. 2010;49:543–53. [PMC free article] [PubMed] [Google Scholar]

116. Wasserburger RH, Alt WJ. The normal RS-T segment elevation variant. Am J Cardiol. 1961;8:184–92. [PubMed] [Google Scholar]

117. Mehta MC, Jain AC. Early repolarization on scalar electrocardiogram. Am J Med Sci. 1995;309:305–11. [PubMed] [Google Scholar]

118. Gussak I, Antzelevitch C. Early repolarization syndrome: clinical characteristics and possible cellular and ionic mechanisms. J Electrocardiol. 2000;33:299–309. [PubMed] [Google Scholar]

119. Bjerregaard P, Gussak I, Kotar SL, Gessler JE. Recurrent syncope in a patient with prominent J-wave. Am Heart J. 1994;127:1426–30. [PubMed] [Google Scholar]

120. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation. 1996;93:372–9. [PubMed] [Google Scholar]

121. Geller JC, Reek S, Goette A, et al. Spontaneous episode of polymorphic ventricular tachycardia in a patient with intermittent Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:1094. [PubMed] [Google Scholar]

122. Daimon M, Inagaki M, Morooka S, et al. Brugada syndrome characterized by the appearance of J waves. Pacing Clin Electrophysiol. 2000;23:405–6. [PubMed] [Google Scholar]

123. Kalla H, Yan GX, Marinchak R. Ventricular fibrillation in a patient with prominent J (Osborn) waves and ST segment elevation in the inferior electrocardiographic leads: a Brugada syndrome variant? J Cardiovasc Electrophysiol. 2000;11:95–8. [PubMed] [Google Scholar]

124. Komiya N, Imanishi R, Kawano H, et al. Ventricular fibrillation in a patient with prominent J wave in the inferior and lateral electrocardiographic leads after gastrostomy. Pacing Clin Electrophysiol. 2006;29:1022–4. [PubMed] [Google Scholar]

125. Shinohara T, Takahashi N, Saikawa T, et al. Characterization of J wave in a patient with idiopathic ventricular fibrillation. Heart Rhythm. 2006;3:1082–4. [PubMed] [Google Scholar]

126. Riera AR, Ferreira C, Schapachnik E, et al. Brugada syndrome with atypical ECG: downsloping ST-segment elevation in inferior leads. J Electrocardiol. 2004;37:101–4. [PubMed] [Google Scholar]

127. Shu J, Zhu T, Yang L, et al. ST-segment elevation in the early repolarization syndrome, idiopathic ventricular fibrillation, and the Brugada syndrome: cellular and clinical linkage. J Electrocardiol. 2005;38:26–32. [PubMed] [Google Scholar]

128. Haissaguerre M, Derval N, Sacher F, et al. Sudden cardiac arrest associated with early repolarization. N Engl J Med. 2008;358:2016–23. [PubMed] [Google Scholar]

129. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008;358:2078–9. [PMC free article] [PubMed] [Google Scholar]

130. Rosso R, Kogan E, Belhassen B, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol. 2008;52:1231–8. [PubMed] [Google Scholar]

131. Tikkanen JT, Anttonen O, Junttila MJ, et al. Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med. 2009;361:2529–37. [PubMed] [Google Scholar]

132. Sinner MF, Reinhard W, Muller M, et al. Association of early repolarization pattern on ECG with risk of cardiac and all-cause mortality: a population-based prospective cohort study (MONICA/KORA) PLoS Med. 2010;7:e1000314. [PMC free article] [PubMed] [Google Scholar]

133. Nam GB, Ko KH, Kim J, et al. Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs. Brugada syndrome. Eur Heart J. 2010;31:330–9. [PMC free article] [PubMed] [Google Scholar]

134. Haissaguerre M, Chatel S, Sacher F, et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J Cardiovasc Electrophysiol. 2009;20:93–8. [PubMed] [Google Scholar]

135. Medeiros-Domingo A, Tan BH, Crotti L, et al. Gain-of-function mutation, S422L, in the KCNJ8-encoded cardiac K ATP channel kir6.1 as a pathogenic substrate for J wave syndromes. Heart Rhythm. 2010;7(10):1466–71. [PMC free article] [PubMed] [Google Scholar]

136. Schwartz PJ. The idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109:399–411. [PubMed] [Google Scholar]

137. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome: prospective longitudinal study of 328 families. Circulation. 1991;84:1136–44. [PubMed] [Google Scholar]

138. Zipes DP. The long QT interval syndrome. A rosetta stone for sympathetic related ventricular tachyarrhythmias. Circulation. 1991;84:1414–9. [PubMed] [Google Scholar]

139. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105:511–9. [PubMed] [Google Scholar]

140. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11. [PubMed] [Google Scholar]

141. Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–9. [PubMed] [Google Scholar]

142. Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803. [PubMed] [Google Scholar]

143. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23. [PubMed] [Google Scholar]

144. Splawski I, Tristani-Firouzi M, Lehmann MH, et al. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17:338–40. [PubMed] [Google Scholar]

145. Ye B, Tester DJ, Vatta M, et al. Molecular and functional characterization of novel cav3-encoded cav-eolin-3 mutations in congenital long QT syndrome [abstract] Heart Rhythm. 2006;3:S1. [Google Scholar]

146. Domingo AM, Kaku T, Tester DJ, et al. Sodium channel β4 subunit mutation causes congenital long QT syndrome. Heart Rhythm. 2006;3:S34. [Google Scholar]

147. Splawski I, Timothy KW, Sharpe LM, et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31. [PubMed] [Google Scholar]

148. Yang Y, Yang Y, Liang B, et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet. 2010;86:872–80. [PMC free article] [PubMed] [Google Scholar]

149. Bednar MM, Harrigan EP, Anziano RJ, et al. The QT interval. Prog Cardiovasc Dis. 2001;43:1–45. [PubMed] [Google Scholar]

150. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res. 1999;42:270–83. [PubMed] [Google Scholar]

151. Sipido KR, Volders PG, De Groot SH, et al. Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation. 2000;102:2137–44. [PubMed] [Google Scholar]

152. Volders PG, Sipido KR, Vos MA, et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation. 1999;100:2455–61. [PubMed] [Google Scholar]

153. Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell Mol Life Sci. 1999;55:494–505. [PubMed] [Google Scholar]

154. Maltsev VA, Sabbah HN, Higgins RS, et al. Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation. 1998;98:2545–52. [PubMed] [Google Scholar]

155. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci. 2003;24:619–25. [PubMed] [Google Scholar]

156. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17:43–51. [PubMed] [Google Scholar]

157. Shimizu W, Antzelevitch C. Effects of a K+ channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation. 2000;102:706–12. [PubMed] [Google Scholar]

158. Antzelevitch C. Heterogeneity of cellular repolarization in LQTS: the role of M cells. Eur Heart J Suppl. 2001;3:K2–16. [Google Scholar]

159. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long QT syndrome: effects of β-adrenergic agonists and antagonists and sodium channel blockers on trans-mural dispersion of repolarization and torsade de pointes. Circulation. 1998;98:2314–22. [PubMed] [Google Scholar]

160. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation. 1997;96:2038–47. [PubMed] [Google Scholar]

161. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000;35:778–86. [PubMed] [Google Scholar]

162. Antzelevitch C, Shimizu W, Yan GX, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol. 1999;10:1124–52. [PubMed] [Google Scholar]

163. Anyukhovsky EP, Sosunov EA, Gainullin RZ, et al. The controversial M cell. J Cardiovasc Electrophysiol. 1999;10:244–60. [PubMed] [Google Scholar]

164. Li GR, Feng J, Yue L, et al. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am J Physiol. 1998;275:H369–77. [PubMed] [Google Scholar]

165. Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94:99–102. [PubMed] [Google Scholar]

166. Gussak I, Brugada P, Brugada J, et al. ECG phenomenon of idiopathic and paradoxical short QT intervals. Card Electrophysiol Rev. 2002;6:49–53. [PubMed] [Google Scholar]

167. Patel C, Yan GX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ Arrhythm Electrophysiol. 2010;3:401–8. [PMC free article] [PubMed] [Google Scholar]

168. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108:965–70. [PubMed] [Google Scholar]

169. Bellocq C, Van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109:2394–7. [PubMed] [Google Scholar]

170. Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109:30–5. [PubMed] [Google Scholar]

171. Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96:800–7. [PubMed] [Google Scholar]

172. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short QT syndrome. Circulation. 2004;110:3661–6. [PubMed] [Google Scholar]

173. Patel C, Antzelevitch C. Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm. 2008;5:585–90. [PMC free article] [PubMed] [Google Scholar]

174. Nof E, Burashnikov A, Antzelevitch C. Cellular basis for atrial fibrillation in an experimental model of short QT1: implications for a pharmacological approach to therapy. Heart Rhythm. 2010;7:251–7. [PMC free article] [PubMed] [Google Scholar]

175. Anttonen O, Vaananen H, Junttila J, et al. Electrocardiographic transmural dispersion of repolarization in patients with inherited short QT syndrome. Ann Noninvasive Electrocardiol. 2008;13:295–300. [PMC free article] [PubMed] [Google Scholar]

176. Gupta P, Patel C, Patel H, et al. Tp-e/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41:567–74. [PubMed] [Google Scholar]

177. Anttonen O, Junttila MJ, Maury P, et al. Differences in twelve-lead electrocardiogram between symptomatic and asymptomatic subjects with short QT interval. Heart Rhythm. 2009;6:267–71. [PubMed] [Google Scholar]

178. Milberg P, Tegelkamp R, Osada N, et al. Reduction of dispersion of repolarization and prolongation of postrepolarization refractoriness explain the antiarrhythmic effects of quinidine in a model of short QT syndrome. J Cardiovasc Electrophysiol. 2007;18:658–64. [PubMed] [Google Scholar]


Page 2

Genetic disorders causing cardiac arrhythmias in the absence of structural heart disease (Primary Electrical Disease)

RhythmInheritanceLocusIon ChannelGene
LQTS(RW)TdPAD
LQT1(Andersen-Tawil Syndrome) (Timothy Syndrome)11p15IKsKCNQ1, KvLQT1
LQT27q35IKrKCNH2, HERG
LQT33p21INaSCN5A, Nav1.5
LQT44q25ANKB, ANK2
LQT521q22IKsKCNE1, minK
LQT621q22IKrKCNE2, MiRP1
LQT717q23IK1KCNJ2, Kir 2.1
LQT86q8AICaCACNA1C, Cav1.2
LQT93p25INaCAV3, Caveolin-3
LQT1011q23.3INaSCN4B. Navb4
LQT117q21-q22IKsAKAP9, Yotiao
LQT1220q11.2INaSNTA1, α–1 Syntrophin
LQT1311q24IK-AChKCNJ5, Kir3.4
LQTS(JLN)TdPAR11p15IKsKCNQ1, KvLQT1
21q22IKsKCNE1, minK
BrSBrS1PVTAD3p21INaSCN5A, Nav1.5
BrS2PVTAD3p24INaGPD1L
BrS3PVTAD12p13.3ICaCACNA1C, CaV1.2
BrS4PVTAD10p12.33ICaCACNB2b, Cavβ2b
BrS5PVTAD19q13.1INaSCN1B, Navβ1
BrS6PVTAD11q13–14ICaKCNE3. MiRP2
BrS7PVTAD11q23.3INaSCN3B, Navb3
BrS8PVTAD7q21.11ICaCACNA2D1, Cavα2δ
ERSERS1PVTAD12p11.23IK-ATPKCNJ8, Kir6.1
ERS2PVTAD12p13.3ICaCACNA1C, CaV1.2
ERS3PVTAD10p12.33ICaCACNB2b, Cavβ2b
ERS4PVTAD7q21.11ICaCACNA2D1, Cavα2δ
SQTSSQT1VT/VFAD7q35IKrKCNH2, HERG
SQT211p15IKsKCNQ1, KvLQT1
SQT3AD17q23.1–24.2IK1KCNJ2, Kir2.1
SQT412p13.3ICaCACNA1C, CaV1.2
SQT5AD10p12.33ICaCACNB2b, Cavβ2b
Catecholaminergic Polymorphic VT
CPVT1VTAD1q42–43RyR2
CPVT2VTAR1p13–21CASQ2