Which intervention would the nurse implement with a healthy older adult who has decreased bone density?

1. Pinto CL, Botelho PB, Carneiro JA, Mota JF. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly. J Cachexia Sarcopenia Muscle. 2016;7(4):413–21. [PMC free article] [PubMed] [Google Scholar]

2. Araújo AP, Bertolini SMMG, Junior JM. Morphophysiologial alterations resulted from the process of musculoskeletal system aging and its consequences for the human body. Perspectivas: biológicas e saúde. 2014;4:22–34. [Google Scholar]

3. Järvinen TL, Sievänen H, Khan KM, Heinonen A, Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008;336(7636):124–6. [PMC free article] [PubMed] [Google Scholar]

4. World Health Organization. Global health and ageing. National Institute on Aging (NIA), National Institutes of Health (NIH); U.S. Department of Health and Human Services; Washington: 2011. p. 32. Available from: [Google Scholar]

5. World Health Organization [Internet] Geneva: World Health Organization; 2015c. [cited May 7, 2017] Available from: http://www.who.int/ [Google Scholar]

6. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015;39(2):155–62. [PMC free article] [PubMed] [Google Scholar]

7. Beaudart C, Reginster JY, Slomian J, Buckinx F, Locquet M, Bruyère O. Prevalence of sarcopenia: the impact of different diagnostic cut-off limits. J Musculoskelet Neuronal Interact. 2014;14(4):425–31. [PubMed] [Google Scholar]

8. Morley JE, Anker SD, Von haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle. 2014;5(4):253–9. [PMC free article] [PubMed] [Google Scholar]

9. Drey M, Krieger B, Sieber CC, et al. Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc. 2014;15(6):435–9. [PubMed] [Google Scholar]

10. Sirola J, Kröger H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. J Osteoporos. 2011;2011:536735. [PMC free article] [PubMed] [Google Scholar]

11. Cruz-jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23. [PMC free article] [PubMed] [Google Scholar]

12. Rolland Y, Czerwinski S, Abellan van kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12(7):433–50. [PMC free article] [PubMed] [Google Scholar]

13. Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 2008;12(7):452–6. [PubMed] [Google Scholar]

14. Macintosh C, Morley JE, Chapman IM. The anorexia of aging. Nutrition. 2000;16(10):983–95. [PubMed] [Google Scholar]

15. Neuwirth C, Burkhardt C, Alix J, et al. Quality Control of Motor Unit Number Index (MUNIX) Measurements in 6 Muscles in a Single-Subject “Round-Robin” Setup. PLoS ONE. 2016;11(5):e0153948. [PMC free article] [PubMed] [Google Scholar]

16. Kaya RD, Nakazawa M, Hoffman RL, Clark BC. Interrelationship between muscle strength, motor units, and aging. Exp Gerontol. 2013;48(9):920–5. [PMC free article] [PubMed] [Google Scholar]

17. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev. 1999;107(2):123–36. [PubMed] [Google Scholar]

18. Haren MT, Siddiqui AM, Armbrecht HJ, et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 2011;34(1):55–68. [PubMed] [Google Scholar]

19. Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci. 2014;6:246. [PMC free article] [PubMed] [Google Scholar]

20. Sinclair A, Morley JE, Rodriguez-mañas L, et al. Diabetes mellitus in older people: position statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes. J Am Med Dir Assoc. 2012;13(6):497–502. [PubMed] [Google Scholar]

21. Cesari M, Kritchevsky SB, Newman AB, et al. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging And Body Composition Study. J Am Geriatr Soc. 2009;57(2):251–9. [PMC free article] [PubMed] [Google Scholar]

22. Newman AB, Kupelian V, Visser M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–9. [PubMed] [Google Scholar]

23. Bassey EJ, Short AH. A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol. 1990;60(5):385–90. [PubMed] [Google Scholar]

24. Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18(1):39–51. [PubMed] [Google Scholar]

25. Muir SW, Montero-odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300. [PubMed] [Google Scholar]

26. Liu CK, Leng X, Hsu FC, et al. The impact of sarcopenia on a physical activity intervention: the Lifestyle Interventions and Independence for Elders Pilot Study (LIFE-P) J Nutr Health Aging. 2014;18(1):59–64. [PMC free article] [PubMed] [Google Scholar]

27. Smoliner C, Sieber CC, Wirth R. Prevalence of sarcopenia in geriatric hospitalized patients. J Am Med Dir Assoc. 2014;15(4):267–72. [PubMed] [Google Scholar]

28. Rossi AP, Fantin F, Micciolo R, et al. Identifying sarcopenia in acute care setting patients. J Am Med Dir Assoc. 2014;15(4):303.e7–12. [PubMed] [Google Scholar]

29. Masanes F, Culla A, Navarro-gonzalez M, et al. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain) J Nutr Health Aging. 2012;16(2):184–7. [PubMed] [Google Scholar]

30. Wu IC, Lin CC, Hsiung CA, et al. Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: a pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int. 2014;14(Suppl 1):52–60. [PubMed] [Google Scholar]

31. Kanis JA, Johnell O, Oden A, Johansson H, Mccloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97. [PMC free article] [PubMed] [Google Scholar]

32. Pearson OM, Lieberman DE. The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;(Suppl 39):63–99. [PubMed] [Google Scholar]

33. Lauretani F, Bandinelli S, Bartali B, et al. Axonal degeneration affects muscle density in older men and women. Neurobiol Aging. 2006;27(8):1145–54. [PMC free article] [PubMed] [Google Scholar]

34. Qureshi AM, Mcguigan FE, Seymour DG, Hutchison JD, Reid DM, Ralston SH. Association between COLIA1 Sp1 alleles and femoral neck geometry. Calcif Tissue Int. 2001;69(2):67–72. [PubMed] [Google Scholar]

35. Rivadeneira F, Houwing-duistermaat JJ, Beck TJ, et al. The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of nonvertebral fracture in the elderly: the Rotterdam Study. J Bone Miner Res. 2004;19(8):1280–90. [PubMed] [Google Scholar]

36. Van meurs JB, Rivadeneira F, Jhamai M, et al. Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J Bone Miner Res. 2006;21(1):141–50. [PubMed] [Google Scholar]

37. Karasik D, Cohen-zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol. 2012;3:303. [PMC free article] [PubMed] [Google Scholar]

38. Hein G, Weiss C, Lehmann G, Niwa T, Stein G, Franke S. Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemicalfindings. Ann Rheum Dis. 2006;65:101–104. [PMC free article] [PubMed] [Google Scholar]

39. Khoury MJ, Mccabe LL, Mccabe ER. Population screening in the age of genomic medicine. N Engl J Med. 2003;348(1):50–8. [PubMed] [Google Scholar]

40. Riggs BL, Khosla S, Melton LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302. [PubMed] [Google Scholar]

41. Watts NB, Adler RA, Bilezikian JP, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22. [PubMed] [Google Scholar]

42. Cawthon PM, Harrison SL, Barrett-connor E, et al. Alcohol intake and its relationship with bone mineral density, falls, and fracture risk in older men. J Am Geriatr Soc. 2006;54(11):1649–57. [PubMed] [Google Scholar]

43. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6. [PMC free article] [PubMed] [Google Scholar]

44. National Osteoporosis Foundation. 54 Million Americans Affected By Osteoporosis and Low Bone Mass. URL: https://www.nof.org/news/54-million-americans-affected-by-osteoporosis-and-low-bone-mass/. Accessed May 10, 2017.

45. Bosy-westphal A, Müller MJ. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease–there is need for a unified definition. Int J Obes (Lond) 2015;39(3):379–86. [PubMed] [Google Scholar]

46. Janssen et al. 2002

47. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547–58. [PMC free article] [PubMed] [Google Scholar]

48. Mclean K, Day L, Dalton A. Economic evaluation of a group-based exercise program for falls prevention among the older community-dwelling population. BMC Geriatr. 2015;15:33. [PMC free article] [PubMed] [Google Scholar]Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4(9):e7038. [PMC free article] [PubMed] [Google Scholar]

49. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4(9):e7038. [PMC free article] [PubMed] [Google Scholar]

50. 2015 ISCD Official Positions - Adult. n.d. URL: http://www.iscd.org/official-positions/2015-iscd-official-positions-adult/. Accessed May 12, 2017.

51. Burgos Peláez R. Global therapeutic approach to sarcopenia. Nutr Hosp. 2006;21(Suppl 3):51–60. [PubMed] [Google Scholar]

52. Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol A Biol Sci Med Sci. 2003;58(7):618–25. [PubMed] [Google Scholar]

53. Sakuma K, Yamaguchi A. Novel intriguing strategies attenuating to sarcopenia. J Aging Res. 2012;2012:251217. [PMC free article] [PubMed] [Google Scholar]

54. Thomas DR. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin Nutr. 2007;26(4):389–99. [PubMed] [Google Scholar]

55. Van geel TA, Geusens PP, Winkens B, Sels JP, Dinant GJ. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle mass, muscle strength and bone mineral density in postmenopausal women: a cross-sectional study. Eur J Endocrinol. 2009;160(4):681–7. [PubMed] [Google Scholar]

56. Brown M. Skeletal muscle and bone: effect of sex steroids and aging. Adv Physiol Educ. 2008;32(2):120–6. [PubMed] [Google Scholar]

57. Roubenoff R. Catabolism of aging: is it an inflammatory process? Curr Opin Clin Nutr Metab Care. 2003;6(3):295–9. [PubMed] [Google Scholar]

58. Sørensen MB, Rosenfalck AM, Højgaard L, Ottesen B. Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes Res. 2001;9(10):622–6. [PubMed] [Google Scholar]

59. Brotto M, Abreu EL. Sarcopenia: pharmacology of today and tomorrow. J Pharmacol Exp Ther. 2012;343(3):540–6. [PMC free article] [PubMed] [Google Scholar]

60. Jørgensen JO, Vahl N, Hansen TB, Thuesen L, Hagen C, Christiansen JS. Growth hormone versus placebo treatment for one year in growth hormone deficient adults: increase in exercise capacity and normalization of body composition. Clin Endocrinol (Oxf) 1996;45(6):681–8. [PubMed] [Google Scholar]

61. Svensson J, Sunnerhagen KS, Johannsson G. Five years of growth hormone replacement therapy in adults: age- and gender-related changes in isometric and isokinetic muscle strength. J Clin Endocrinol Metab. 2003;88(5):2061–9. [PubMed] [Google Scholar]

62. Nieuwenhuizen WF, Weenen H, Rigby P, Hetherington MM. Older adults and patients in need of nutritional support: review of current treatment options and factors influencing nutritional intake. Clin Nutr. 2010;29(2):160–9. [PubMed] [Google Scholar]

63. Ha L, Hauge T, Spenning AB, Iversen PO. Individual, nutritional support prevents undernutrition, increases muscle strength and improves QoL among elderly at nutritional risk hospitalized for acute stroke: a randomized, controlled trial. Clin Nutr. 2010;29(5):567–73. [PubMed] [Google Scholar]

64. Bischoff-ferrari HA, Dawson-hughes B, Staehelin HB, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009;339:b3692. [PMC free article] [PubMed] [Google Scholar]

65. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–1519S. [PubMed] [Google Scholar]

66. Kaiser M, Bandinelli S, Lunenfeld B. Frailty and the role of nutrition in older people. A review of the current literature. Acta Biomed. 2010;81(Suppl 1):37–45. [PubMed] [Google Scholar]

67. Wolfe RR. Perspective: Optimal protein intake in the elderly. J Am Med Dir Assoc. 2013;14(1):65–6. [PubMed] [Google Scholar]

68. Kim JS, Wilson JM, Lee SR. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem. 2010;21(1):1–13. [PubMed] [Google Scholar]

69. Paddon-jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90. [PMC free article] [PubMed] [Google Scholar]

70. Børsheim E, Bui QU, Tissier S, Kobayashi H, Ferrando AA, Wolfe RR. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin Nutr. 2008;27(2):189–95. [PMC free article] [PubMed] [Google Scholar]

71. Johnston AP, De lisio M, Parise G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab. 2008;33(1):191–9. [PubMed] [Google Scholar]

72. Strasser B, Keinrad M, Haber P, Schobersberger W. Efficacy of systematic endurance and resistance training on muscle strength and endurance performance in elderly adults–a randomized controlled trial. Wien Klin Wochenschr. 2009;121(23-24):757–64. [PubMed] [Google Scholar]

73. Binder EF, Yarasheski KE, Steger-may K, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci. 2005;60(11):1425–31. [PubMed] [Google Scholar]

74. Klitgaard H, Mantoni M, Schiaffino S, et al. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand. 1990;140(1):41–54. [PubMed] [Google Scholar]

75. National Osteoporosis Foundation. Calcium and Vitamin D: What You Need to Know. URL: https://www.nof.org/patients/treatment/calciumvitamin-d/get-the-facts-on-calcium-and-vitamin-d/. Accessed May 15, 2017.

76. Judge J, Birge S, Gloth F, 3rd, Heaney RP, Hollis BW, Kenny A, Kiel DP, Saliba D, Schneider DL, Vieth R. Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. Journal of the American Geriatrics Society. 2013;62:1. 147–152. [Google Scholar]

77. University of Maryland Medical Center. Osteoporosis. URL: http://www.umm.edu/health/medical/reports/articles/osteoporosis. Accessed May 15, 2017.

78. Cosman F, De beur SJ, Leboff MS, et al. Erratum to: Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2015;26(7):2045–7. [PMC free article] [PubMed] [Google Scholar]

79. Granacher U, Gollhofer A, Hortobágyi T, Kressig RW, Muehlbauer T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: a systematic review. Sports Med. 2013;43(7):627–41. [PubMed] [Google Scholar]

80. Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008;56(12):2234–43. [PubMed] [Google Scholar]

81. Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;(9):CD007146. [PMC free article] [PubMed] [Google Scholar]

82. Li F, Harmer P, Fisher KJ, McAuley E, Chaumeton N, Eckstrom E, Wilson NL. Tai Chi And Fall Reductions In Older Adults: A Randomized Controlled Trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2005;60(2):187–194. [PubMed] [Google Scholar]

83. Cheung AM, Giangregorio L. Mechanical stimuli and bone health: what is the evidence? Curr Opin Rheumatol. 2012;24(5):561–66. [PubMed] [Google Scholar]

84. Maurel DB, Boisseau N, Benhamou CL, Jaffre C. Alcohol and bone: Review of dose effects and mechanisms. Osteoporosis International. 2012;23(1):1–16. [PubMed] [Google Scholar]

85. Heir T, Eide G. Injury proneness in infantry conscripts undergoing a physical training programme: smokeless tobacco use, higher age, and low levels of physical fitness are risk factors. Scand J Med Sci Sports. 1997;7(5):304–11. [PubMed] [Google Scholar]

86. Kanis JA, World Health Organization Scientific Group Assessment of osteoporosis at the primary health care level Technical Report Sheffield, United Kingdom: World Health Organization Collaborating Centre for Metabolic Bone Diseases. 2008 [Google Scholar]

87. Conti V, Russomanno G, Corbi G, et al. A polymorphism at the translation start site of the vitamin D receptor gene is associated with the response to anti-osteoporotic therapy in postmenopausal women from southern Italy. Int J Mol Sci. 2015;16(3):5452–66. [PMC free article] [PubMed] [Google Scholar]

88. Song J, Jin Z, Chang F, Li L, Su Y. Single and combined use of human parathyroid hormone (PTH) (1-34) on areal bone mineral density (aBMD) in postmenopausal women with osteoporosis: evidence based on 9 RCTs. Med Sci Monit. 2014;20:2624–32. [PMC free article] [PubMed] [Google Scholar]

89. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998;339(5):292–9. [PubMed] [Google Scholar]

90. Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab. 2000;85(11):4118–24. [PubMed] [Google Scholar]

91. Boonen S, Reginster JY, Kaufman JM, Lippuner K, Zanchetta J, Langdahl B, et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012 Nov;367(18):1714–23. [PubMed] [Google Scholar]

92. Bethel M, Lohr KM, Carbone LD, Machua W, Diamond HS, Andary MT, Gellman H, Goldberg E, Hobar C, Jacobs-Kosmin D, Kaplan RJ, Lane JM, Lenrow D, Lin J, Moberg-Wolff E, Nalamachu SR, Salcido R, Schmitz MA, Serota AC, Shanmugam S, Slipman CW, Talavera F, Vuppalanchi S, Whyte WS, II, Wiedel JD. Osteoporosis Treatment & Management. Medscape. Updated 2016. Web. [Google Scholar]

93. Rosen HN, Rosen CJ, Mulder JE. Selective estrogen receptor modulators for prevention and treatment of osteoporosis. UpToDate. 2015. Web. [Google Scholar]

94. Riggs BL, Hartmann LC. Selective estrogen-receptor modulators – mechanisms of action and application to clinical practice. N Engl J Med. 2003;348:618. [PubMed] [Google Scholar]

95. Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol. 2014;142:142–54. [PubMed] [Google Scholar]

96. Powles TJ, Hickish T, Kanis JA, Tidy A, Ashley S. Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol. 1996;14(1):78–84. [PubMed] [Google Scholar]

97. Love RR, Mazess RB, Barden HS, et al. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med. 1992;326(13):852–6. [PubMed] [Google Scholar]

98. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282(7):637–45. [PubMed] [Google Scholar]

99. Ronkin S, Northington R, Baracat E, Nunes MG, Archer DF, Constantine G, et al. Endometrial effects of bazedoxifene acetate, a novel selective estrogen receptor modulator, in postmenopausal women. ObstetGynecol. 2005;105(6):1397–404. [PubMed] [Google Scholar]

100. Silverman SL, Christiansen C, Genant HK, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res. 2008;23(12):1923–34. [PubMed] [Google Scholar]

101. Zhang X, Jeyakumar M, Petukhov S, Bagchi MK. A nuclear receptor corepressor modulates transcriptional activity of antagonist-occupied steroid hormone receptor. Mol Endocrinol. 1998;12(4):513–24. [PubMed] [Google Scholar]

102. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev. 1999;20(3):358–417. [PubMed] [Google Scholar]

103. Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. Science. 2002;295(5564):2465–8. [PubMed] [Google Scholar]

104. Tsai MJ, O’malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–86. [PubMed] [Google Scholar]

105. Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging. 2014;9:1437–52. [PMC free article] [PubMed] [Google Scholar]

106. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349–55. [PubMed] [Google Scholar]

107. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40(6):1434–46. [PMC free article] [PubMed] [Google Scholar]

108. Kneissel M, Boyde A, Gasser JA. Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1-34) Bone. 2001;28(3):237–50. [PubMed] [Google Scholar]

109. Kraenzlin ME, Meier C. Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol. 2011;7(11):647–56. [PubMed] [Google Scholar]

110. Chen P, Jerome CP, Burr DB, et al. Interrelationships between bone microarchitecture and strength in ovariectomized monkeys treated with teriparatide. J Bone Miner Res. 2007;22(6):841–8. [PubMed] [Google Scholar]

111. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41. [PubMed] [Google Scholar]

112. Kaufman JM, Orwoll E, Goemaere S, et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005;16(5):510–6. [PubMed] [Google Scholar]

113. Lindsay R, Scheele WH, Neer R, et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med. 2004;164(18):2024–30. [PubMed] [Google Scholar]

114. Orwoll ES, Scheele WH, Paul S, et al. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17. [PubMed] [Google Scholar]

115. Martin TJ, Quinn JM, Gillespie MT, Ng KW, Karsdal MA, Sims NA. Mechanisms involved in skeletal anabolic therapies. Ann N Y Acad Sci. 2006;1068:458–70. [PubMed] [Google Scholar]

116. Romito K, Herman CJ. Calcitonin for Osteoporosis. Osteoporosis Health Center; WebMD. 2014. Web. [Google Scholar]

117. Aitken JM, Lindsay R, Hart DM. Long-term oestrogens for the prevention of post-menopausal osteoporosis. Postgrad Med J. 1976;52(Suppl 6):18–26. [PubMed] [Google Scholar]

118. Christiansen C, Christensen MS, Transbøl I. Bone mass in postmenopausal women after withdrawal of oestrogen/gestagen replacement therapy. Lancet. 1981;1(8218):459–61. [PubMed] [Google Scholar]

119. Wells G, Tugwell P, Shea B, et al. Meta-analyses of therapies for postmenopausal osteoporosis. V. Meta-analysis of the efficacy of hormone replacement therapy in treating and preventing osteoporosis in postmenopausal women. Endocr Rev. 2002;23(4):529–39. [PubMed] [Google Scholar]

120. Yates J, Barrett-connor E, Barlas S, Chen YT, Miller PD, Siris ES. Rapid loss of hip fracture protection after estrogen cessation: evidence from the National Osteoporosis Risk Assessment. Obstet Gynecol. 2004;103(3):440–6. [PubMed] [Google Scholar]

121. Cauley JA, Robbins J, Chen Z, et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA. 2003;290(13):1729–38. [PubMed] [Google Scholar]

122. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. [PubMed] [Google Scholar]

123. Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol. 2008;18(11):827–35. [PubMed] [Google Scholar]


Page 2

Physiological and Anatomical Changes Related to Aging

ChangesFunctional Effects
Cardiovascular- Increased collagen matrix inTunica Media- Loss of elastin fibers- Cardiac hypertrophy:septum thickening

- Decreased cardiomyocytes and increased extracellular matrix

- Heart and vascular stiffness- Mayor endothelial dysfunction- Explosive volume preserved

- Increased risk of arrhythmias

Renal- Thinning renal cortex- Glomerular sclerosis arteries- Glomerular basement membrane

Thickening

- Decreased ability to concentrate urine. Lower renin and aldosterone levels
- Lower vitamin D hydroxylation
Glucose Metabolism- Increased visceral fat- Fat tissue infiltration

- Less beta cell mass

- Increased production of adipokines and inflammatory factors inflammatory factors- Greater insulin resistance and

diabetes

Bones- Decreased bone mineral content- Increased fractures and falls
- Osteoporosis
Muscular- Loss of muscle mass- Less type II fibers

- Fat infiltration

- Decreased strength and power- Falls

- Fragility

Central Nervous System- Less brain mass- Increased cerebrospinal fluid- Low neuronal loss, focused

- Changes in neuronal arborization

- Less targeting neuronal activity- Lower processing speed- Decreased working memory

- Less motor skills

Body Composition- Increased body fat- Increased Body Mass Index

(BMI)

- Increased risk of disease.