Which diet is considered the best for patients who are at high risk for cardiovascular disease?

1. Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association. Circulation. 2017;35:e146–e603. doi: 10.1161/CIR.0000000000000485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Ravera A., Carubelli V., Sciatti E., Bonadei I., Gorga E., Cani D., Vizzardi E., Metra M., Lombardi C. Nutrition and cardiovascular disease: Finding the perfect recipe for cardiovascular health. Nutrients. 2016;8:363. doi: 10.3390/nu8060363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., de Ferranti S., Despres J.P., Fullerton H.J., et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation. 2016;133:e38–e360. doi: 10.1161/CIR.0000000000000350. [PubMed] [CrossRef] [Google Scholar]

4. Benjamin E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S., Chiuve S.E., Cushman M., Delling F.N., Deo R., et al. Heart Disease and Stroke Statistics-2018 Update: A report from the American heart association. Circulation. 2018;137:e67–e492. doi: 10.1161/CIR.0000000000000558. [PubMed] [CrossRef] [Google Scholar]

5. Artinian N.T., Fletcher G.F., Mozaffarian D., Kris-Etherton P., Van Horn L., Lichtenstein A.H., Kumanyika S., Kraus W.E., Fleg J.L., Redeker N.S. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: A scientific statement from the American Heart Association. Circulation. 2010;122:406–441. doi: 10.1161/CIR.0b013e3181e8edf1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. GBD 2013 Mortality and Causes of Death Collaborators Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–171. doi: 10.1016/S0140-6736(14)61682-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Anand S.S., Hawkes C., de Souza R.J., Mente A., Dehghan M., Nugent R., Zulyniak M.A., Weis T., Bernstein A.M., Krauss R.M. Food consumption and its impact on cardiovascular disease: Importance of solutions focusedon the globalized food system: A report from the workshop convened by the world heart federation. J. Am. Coll. Cardiol. 2015;66:1590–1614. doi: 10.1016/j.jacc.2015.07.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Lacroix S., Cantin J., Nigam A. Contemporary issues regarding nutrition in cardiovascular rehabilitation. Ann. Phys. Rehabil. Med. 2017;60:36–42. doi: 10.1016/j.rehab.2016.07.262. [PubMed] [CrossRef] [Google Scholar]

9. O’Rourke K., Vander Zanden A., Shepard D., Leach-Kemon K. For the Institute for Health Metrics and Evaluation. Cardiovascular disease worldwide, 1990–2013. JAMA. 2015;314:1905. doi: 10.1001/jama.2015.14994. [CrossRef] [Google Scholar]

10. Mozaffarian D., Ludwig D.S. Dietary guidelines in the 21st century: A time for food. JAMA. 2010;304:681–682. doi: 10.1001/jama.2010.1116. [PubMed] [CrossRef] [Google Scholar]

11. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 2017;70:2278–2289. doi: 10.1016/j.jacc.2017.09.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Libby P., Hansson G.K. Taming immune and inflammatory responses to treat atherosclerosis. J. Am. Coll. Cardiol. 2018;71:173–176. doi: 10.1016/j.jacc.2017.10.081. [PubMed] [CrossRef] [Google Scholar]

13. Micha R., Peñalvo J.L., Cudhea F., Imamura F., Rehm C.D., Mozaffarian D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317:912–924. doi: 10.1001/jama.2017.0947. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Cardoso Lde O., Carvalho M.S., Cruz O.G., Melere C., Luft V.C., Molina M.C., Faria C.P., Benseñor I.M., Matos S.M., Fonseca M.D., et al. Eating patterns in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): An exploratory analysis. Cad. Saude Publica. 2016;32:e00066215. doi: 10.1590/0102-311X00066215. [PubMed] [CrossRef] [Google Scholar]

15. Lu H., Daugherty A. Recent Highlights of ATVB Atherosclerosis. Arterioescler. Thromb. Vasc. Biol. 2015;35:485–491. doi: 10.1161/ATVBAHA.115.305380. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Arbab-Zadeh A., Fuster V. The Myth of the “Vulnerable Plaque”: Transitioning from a Focus on Individual Lesions to Atherosclerotic Disease Burden for Coronary Artery Disease Risk Assessment. J. Am. Coll. Cardiol. 2015;65:846–855. doi: 10.1016/j.jacc.2014.11.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Jolliffe I.T., Cadima J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016;374:20150202. doi: 10.1098/rsta.2015.0202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Ozawa M., Shipley M., Kivimaki M., Singh-Manoux A., Brunner E.J. Dietary pattern, inflammation and cognitive decline: The Whitehall II prospective cohort study. Clin. Nutr. 2017;36:506–512. doi: 10.1016/j.clnu.2016.01.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Atkins J.L., Whincup P.H., Morris R.W., Lennon L.T., Papacosta O., Wannamethee S.G. Dietary patterns and the risk of CVD and all-cause mortality in older British men. Br. J. Nutr. 2016;116:1246–1255. doi: 10.1017/S0007114516003147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Viscogliosi G., Cipriani E., Liguori M.L., Marigliano B., Saliola M., Ettorre E., Andreozzi P. Mediterranean dietary pattern adherence: Associations with prediabetes, metabolic syndrome, and related microinflammation. Metab. Syndr. Relat. Disord. 2013;11:210–216. doi: 10.1089/met.2012.0168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Denova-Gutiérrez E., Tucker K.L., Flores M., Barquera S., Salmerón J. Dietary patterns are associated with predicted cardiovascular disease risk in an urban mexican adult population. J. Nutr. 2016;146:90–97. doi: 10.3945/jn.115.217539. [PubMed] [CrossRef] [Google Scholar]

22. Okada E., Takahashi K., Takimoto H., Takabayashi S., Kishi T., Kobayashi T., Nakamura K., Ukawa S., Nakamura M., Sasaki S., et al. Dietary patterns among Japanese adults: Findings from the National Health and Nutrition Survey, 2012. Asia Pac. J. Clin. Nutr. 2018;27:1120–1130. doi: 10.6133/apjcn.042018.06. [PubMed] [CrossRef] [Google Scholar]

23. Hu F.B. Dietary patterns analysis: a new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002;13:3–9. doi: 10.1097/00041433-200202000-00002. [PubMed] [CrossRef] [Google Scholar]

24. Wood A.D., Strachan A.A., Thies F., Aucott L.S., Reid D.M., Hardcastle A.C., Mavroeidi A., Simpson W.G., Duthie G.G., Macdonald H.M. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk. Br. J. Nutr. 2014;112:1341–1352. doi: 10.1017/S0007114514001962. [PubMed] [CrossRef] [Google Scholar]

25. Sijtsma F.P., Meyer K.A., Steffen L.M., Van Horn L., Shikany J.M., Odegaard A.O., Gross M.D., Kromhout D., Jacobs D.R., Jr. Diet quality and markers of endothelial function: The CARDIA study. Nutr. Metab. Cardiovasc. Dis. 2014;24:632–638. doi: 10.1016/j.numecd.2013.12.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Piccand E., Vollenweider P., Guessous I., Marques-Vidal P. Association between dietary intake and inflammatory markers: Results from the CoLaus study. Public Health Nutr. 2018;18:1–8. doi: 10.1017/S1368980018002355. [PubMed] [CrossRef] [Google Scholar]

27. Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Noad R.L., Rooney C., McCall D., Young I.S., McCance D., McKinley M.C., Woodside J.V., McKeown P.P. Beneficial effect of a polyphenol-rich diet on cardiovascular risk: A randomised control trial. Heart. 2016;102:1371–1379. doi: 10.1136/heartjnl-2015-309218. [PubMed] [CrossRef] [Google Scholar]

29. Quintana Pacheco D.A., Sookthai D., Wittenbecher C., Graf M.E., Schübel R., Johnson T., Katzke V., Jakszyn P., Kaaks R., Kühn T. Red meat consumption and risk of cardiovascular diseases-is increased iron load a possible link? Am. J. Clin. Nutr. 2018;107:113–119. doi: 10.1093/ajcn/nqx014. [PubMed] [CrossRef] [Google Scholar]

30. Oude Griep L.M., Wang H., Chan Q. Empirically-derived dietary patterns, diet quality scores, and markers of inflammation and endothelial dysfunction. Curr. Nutr. Rep. 2013;2:97–104. doi: 10.1007/s13668-013-0045-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Barbaresko J., Koch M., Schulze M.B., Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013;71:511–527. doi: 10.1111/nure.12035. [PubMed] [CrossRef] [Google Scholar]

32. Badimon L., Chagas P., Chiva-Blanch G. Diet and Cardiovascular Disease: Effects of Foods and Nutrients in Classical and Emerging Cardiovascular Risk Factors. Curr. Med. Chem. 2017 doi: 10.2174/0929867324666170428103206. [PubMed] [CrossRef] [Google Scholar]

33. Ros E., Martínez-González M.A., Estruch R., Salas-Salvadó J., Fitó M., Martínez J.A., Corella D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014;5:330S–336S. doi: 10.3945/an.113.005389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Ahluwalia N., Andreeva V.A., Kesse-Guyot E., Hercberg S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013;39:99–110. doi: 10.1016/j.diabet.2012.08.007. [PubMed] [CrossRef] [Google Scholar]

35. Tapsell L.C., Neale E.P., Satija A., Hu F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016;7:445–454. doi: 10.3945/an.115.011718. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Húc T., Nowinski A., Drapala A., Konopelski P., Ufnal M. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol. Res. 2018;130:172–179. doi: 10.1016/j.phrs.2017.12.025. [PubMed] [CrossRef] [Google Scholar]

37. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585. doi: 10.1038/nm.3145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Nowinski A., Ufnal M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition. 2018;46:7–12. doi: 10.1016/j.nut.2017.08.001. [PubMed] [CrossRef] [Google Scholar]

39. Mehta D., Malik A.B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 2016;86:279–367. doi: 10.1152/physrev.00012.2005. [PubMed] [CrossRef] [Google Scholar]

40. Virmani R., Joner M., Sakakura K. Recent highlights of ATVB: Calcification. Arterioscler. Thromb. Vasc. Biol. 2014;34:1329–1332. doi: 10.1161/ATVBAHA.114.304000. [PubMed] [CrossRef] [Google Scholar]

41. Kwon G.P., Schroeder J.L., Amar M.J., Remaley A.T., Balaban R.S. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation. 2008;117:2658–2664. doi: 10.1161/CIRCULATIONAHA.107.754614. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Jennings L.K. Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost. 2009;102:248–257. doi: 10.1160/TH09-03-0192. [PubMed] [CrossRef] [Google Scholar]

43. Chistiakov D.A., Melnichenko A.A., Myasoedova V.A., Grenchko A.V., Orekhov A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. 2017;95:1153–1165. doi: 10.1007/s00109-017-1575-8. [PubMed] [CrossRef] [Google Scholar]

44. Salvayre R., Auge N., Benoist H., Negre-Salvayre A. Oxidized low-density lipoprotein-induced apoptosis. Biochim. Biophys. Acta. 2002;1585:213–221. doi: 10.1016/S1388-1981(02)00343-8. [PubMed] [CrossRef] [Google Scholar]

45. Ghosh S., Zhao B., Bie J., Song J. Macrophage cholesteryl ester mobilization and atherosclerosis. Vasc. Pharmacol. 2010;52:1–10. doi: 10.1016/j.vph.2009.10.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Legein B., Temmerman L., Biessen E.A., Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell. Mol. Life Sci. 2013;70:3847–3869. doi: 10.1007/s00018-013-1289-1. [PubMed] [CrossRef] [Google Scholar]

47. Low Wang C.C., Hess C.N., Hiatt W.R., Goldfine A.B. Atherosclerotic cardiovascular disease and hearth failure in type 2 diabetes-mechanisms, management, and clinical considerations. Circulation. 2016;133:2459–2502. doi: 10.1161/CIRCULATIONAHA.116.022194. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Harrison D., Griendling K.K., Landmesser U., Hornig B., Drexler H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003;91:7A–11A. doi: 10.1016/S0002-9149(02)03144-2. [PubMed] [CrossRef] [Google Scholar]

49. Brown D.I., Griendling K.K. Regulation of signaling transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 2015;116:531–549. doi: 10.1161/CIRCRESAHA.116.303584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Littlewood T.D., Bennett M.R. Apoptotic cell death in atherosclerosis. Curr. Opin. Lipodol. 2003;14:469–475. doi: 10.1097/00041433-200310000-00007. [PubMed] [CrossRef] [Google Scholar]

51. Li H., Horke S., Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237:208–219. doi: 10.1016/j.atherosclerosis.2014.09.001. [PubMed] [CrossRef] [Google Scholar]

52. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Torres N., Guevara-Cruz M., Velázquez-Villegas L.A., Tovar A.R. Nutrition and atherosclerosis. Arch. Med. Res. 2015;46:408–426. doi: 10.1016/j.arcmed.2015.05.010. [PubMed] [CrossRef] [Google Scholar]

54. Li H., Forstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr. Opin. Pharmacol. 2013;13:161–167. doi: 10.1016/j.coph.2013.01.006. [PubMed] [CrossRef] [Google Scholar]

55. Badimon L., Vilahur G., Padro T. Lipoproteins, platelets and atherothrombosis. Rev. Esp. Cardiol. 2009;62:1161–1178. doi: 10.1016/S1885-5857(09)73331-6. [PubMed] [CrossRef] [Google Scholar]

56. Kattoor A.J., Pothineni N.V.K., Palagiri D. Oxidative strees in atherosclerosis. Curr. Atheroscler. Rep. 2017;19:42. doi: 10.1007/s11883-017-0678-6. [PubMed] [CrossRef] [Google Scholar]

57. Guzik T.J., Korbut R., Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 2003;54:469–487. [PubMed] [Google Scholar]

58. Centritto F., Iacoviello L., di Giuseppe R., De Curtis A., Costanzo S., Zito F., Grioni S., Sieri S., Donati M.B., de Gaetano G., et al. Dietary patterns, cardiovascular risk factors and C-reactive protein in a healthy Italian population. Nutr. Metab. Cardiovasc. Dis. 2009;19:697–706. doi: 10.1016/j.numecd.2008.11.009. [PubMed] [CrossRef] [Google Scholar]

59. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation. 2016;133:187–225. doi: 10.1161/CIRCULATIONAHA.115.018585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Silveira B.K.S., Oliveira T.M.S., Andrade P.A., Hermsdorff H.H.M., Rosa C.O.B., Franceschini S.D.C.C. Dietary pattern and macronutrients profile on the variation of inflammatory biomarkers: Scientific Update. Cardiol. Res. Pract. 2018;2018:4762575. doi: 10.1155/2018/4762575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Esposito K., Ciotola M., Giugliano D. Mediterranean diet, endothelial function and vascular inflammatory markers. Public Health Nutr. 2006;9:1073–1076. doi: 10.1017/S1368980007668529. [PubMed] [CrossRef] [Google Scholar]

62. Llorente-Cortés V., Estruch R., Mena M.P., Ros E., González M.A., Fitó M., Lamuela-Raventós R.M., Badimon L. Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk. Atherosclerosis. 2010;208:442–450. doi: 10.1016/j.atherosclerosis.2009.08.004. [PubMed] [CrossRef] [Google Scholar]

63. Casas R., Sacanella E., Urpí-Sardà M., Chiva-Blanch G., Ros E., Martínez-González M.A., Covas M.I., Lamuela-Raventos R.M., Salas-Salvadó J., Fiol M., et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE. 2014;9:e100084. doi: 10.1371/journal.pone.0100084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Casas R., Urpi-Sardà M., Sacanella E., Arranz S., Corella D., Castañer O., Lamuela-Raventós R.M., Salas-Salvadó J., Lapetra J., Portillo M.P., et al. Anti-Inflammatory Effects of the Mediterranean Diet in the Early and Late Stages of Atheroma Plaque Development. Mediat. Inflamm. 2017;2017:3674390. doi: 10.1155/2017/3674390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Kastorini C.M., Panagiotakos D.B., Chrysohoou C., Georgousopoulou E., Pitaraki E., Puddu P.E., Tousoulis D., Stefanadis C., Pitsavos C., ATTICA Study Group Metabolic syndrome, adherence to the Mediterranean diet and 10-year cardiovascular disease incidence: The ATTICA study. Atherosclerosis. 2016;246:87–93. doi: 10.1016/j.atherosclerosis.2015.12.025. [PubMed] [CrossRef] [Google Scholar]

66. Cainzos-Achirica M., Miedema M.D., McEvoy J.W., Cushman M., Dardari Z., Greenland P., Nasir K., Budoff M.J., Al-Mallah M.H., Yeboah J., et al. The prognostic value of high sensitivity C-reactive protein in a multi-ethnic population after >10 years of follow-up: The Multi-Ethnic Study of Atherosclerosis (MESA) Int. J. Cardiol. 2018;264:158–164. doi: 10.1016/j.ijcard.2018.02.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Lahoz C., Castillo E., Mostaza J.M., de Dios O., Salinero-Fort M.A., González-Alegre T., García-Iglesias F., Estirado E., Laguna F., Sanchez V., et al. Relationship of the Adherence to a Mediterranean Diet and Its Main Components with CRP Levels in the Spanish Population. Nutrients. 2018;10:379. doi: 10.3390/nu10030379. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Pounis G., Costanzo S., di Giuseppe R., de Lucia F., Santimone I., Sciarretta A., Barisciano P., Persichillo M., de Curtis A., Zito F., et al. Consumption of healthy foods at different content of antioxidant vitamins and phytochemicals and metabolic risk factors for cardiovascular disease in men and women of the Moli-sani study. Eur. J. Clin. Nutr. 2013;67:207–213. doi: 10.1038/ejcn.2012.201. [PubMed] [CrossRef] [Google Scholar]

69. Sureda A., Bibiloni M.D.M., Julibert A., Bouzas C., Argelich E., Llompart I., Pons A., Tur J.A. Adherence to the Mediterranean Diet and Inflammatory Markers. Nutrients. 2018;10:62. doi: 10.3390/nu10010062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018;378:e34. doi: 10.1056/NEJMoa1800389. [PubMed] [CrossRef] [Google Scholar]

71. Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Ruiz-Gutiérrez V., Covas M.I., Fiol M., Gómez-Gracia E., López-Sabater M.C., Vinyoles E., et al. Effects of a Mediterraneanstyle diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006;145:1–11. doi: 10.7326/0003-4819-145-1-200607040-00004. [PubMed] [CrossRef] [Google Scholar]

72. Urpi-Sarda M., Casas R., Chiva-Blanch G., Romero-Mamani E.S., Valderas-Martínez P., Salas-Salvadó J., Covas M.I., Toledo E., Andres-Lacueva C., Llorach R., et al. The Mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J. Nutr. 2012;142:1019–1025. doi: 10.3945/jn.111.148726. [PubMed] [CrossRef] [Google Scholar]

73. Mena M.P., Sacanella E., Vazquez-Agell M., Morales M., Fitó M., Escoda R., Serrano-Martínez M., Salas-Salvadó J., Benages N., Casas R., et al. Inhibition of circulating immune cell activation: A molecular antiinflammatory effect of the Mediterranean diet. Am. J. Clin. Nutr. 2009;89:248–256. doi: 10.3945/ajcn.2008.26094. [PubMed] [CrossRef] [Google Scholar]

74. Casas R., Sacanella E., Urpí-Sardà M., Corella D., Castañer O., Lamuela-Raventos R.M., Salas-Salvadó J., Martínez-González M.A., Ros E., Estruch R. Long-Term Immunomodulatory Effects of a Mediterranean Diet in Adults at High Risk of Cardiovascular Disease in the PREvención con DIeta MEDiterránea (PREDIMED) Randomized Controlled Trial. J. Nutr. 2016;146:1684–1693. doi: 10.3945/jn.115.229476. [PubMed] [CrossRef] [Google Scholar]

75. Ambring A., Johansson M., Axelsen M., Gan L., Strandvik B., Friberg P. Mediterranean-inspired diet lowers the ratio of serum phospholipid n-6 to n-3 fatty acids, the number of leukocytes and platelets, and vascular endothelial growth factor in healthy subjects. Am. J. Clin. Nutr. 2006;83:575–581. doi: 10.1093/ajcn.83.3.575. [PubMed] [CrossRef] [Google Scholar]

76. Esposito K., Marfella R., Ciotola M., Di Palo C., Giugliano F., Giugliano G., D’Armiento M., D’Andrea F., Giugliano D. Effect of a Mediterranean-Style Diet on Endothelial Dysfunction and Markers of Vascular Inflammation in the Metabolic Syndrome: A Randomized Trial. JAMA. 2004;292:1440. doi: 10.1001/jama.292.12.1440. [PubMed] [CrossRef] [Google Scholar]

77. Azzini E., Polito A., Fumagalli A., Intorre F., Venneria E., Durazzo A., Zaccaria M., Ciarapica D., Foddai M.S., Mauro B., et al. Mediterranean diet effect: An Italian picture. Nutr. J. 2011;10:125. doi: 10.1186/1475-2891-10-125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Medina-Remón A., Casas R., Tressserra-Rimbau A., Ros E., Martínez-González M.A., Fitó M., Corella D., Salas-Salvadó J., Lamuela-Raventos R.M., Estruch R., et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2017;83:114–128. doi: 10.1111/bcp.12986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Arpón A., Milagro F.I., Razquin C., Corella D., Estruch R., Fitó M., Marti A., Martínez-González M.A., Ros E., Salas-Salvadó J., et al. Impact of consuming extra-virgin olive oil or nuts within a Mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-Navarra randomized controlled trial: A role for dietary lipids. Nutrients. 2017;10:15. doi: 10.3390/nu10010015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Arpón A., Riezu-Boj J.I., Milagro F.I., Marti A., Razquin C., Martínez-González M.A., Corella D., Estruch R., Casas R., Fitó M., et al. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J. Physiol. Biochem. 2016;73:445–455. doi: 10.1007/s13105-017-0552-6. [PubMed] [CrossRef] [Google Scholar]

81. Corella D., González J.I., Bulló M., Carrasco P., Portolés O., Díez-Espino J., Covas M.I., Ruíz-Gutierrez V., Gómez-Gracia E., Arós F., et al. Polymorphisms cyclooxygenase-2-765G>C and interleukin-6-174G>C are associated with serum inflammation markers in a high cardiovascular risk population and do not modify the response to a Mediterranean diet supplemented with virgin olive oil or nuts. J. Nutr. 2009;139:128–134. doi: 10.3945/jn.108.093054. [PubMed] [CrossRef] [Google Scholar]

82. Corella D., Tai E.S., Sorlí J.V., Chew S.K., Coltell O., Sotos-Prieto M., García-Rios A., Estruch R., Ordovas J.M. Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: Replication of a gene-saturated fat interaction. Int. J. Obes. 2011;35:666–675. doi: 10.1038/ijo.2010.187. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Corella D., Carrasco P., Fitó M., Martínez-González M.A., Salas-Salvadó J., Arós F., Lapetra J., Guillén M., Ortega-Azorín C., Warnberg J., et al. Gene-environment interactions of CETP gene variation in a high cardiovascular risk Mediterranean population. J. Lipid Res. 2010;51:2798–2807. doi: 10.1194/jlr.P005199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Corella D., Carrasco P., Sorlí J.V., Estruch R., Rico-Sanz J., Martínez-González M.Á., Salas-Salvadó J., Covas M.I., Coltell O., Arós F., et al. Mediterranean diet reduces the adverse effect of the TCF7L2-rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: A randomized controlled trial in a high-cardiovascular-risk population. Diabetes Care. 2013;36:3803–3811. doi: 10.2337/dc13-0955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Saneei P., Salehi-Abargouei A., Esmaillzadeh A., Azadbakht L. Influence of dietary approaches to stop hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2014;24:1253–1261. doi: 10.1016/j.numecd.2014.06.008. [PubMed] [CrossRef] [Google Scholar]

86. Soltani S., Shirani F., Chitsazi M.J., Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Obes. Rev. 2016;17:442–454. doi: 10.1111/obr.12391. [PubMed] [CrossRef] [Google Scholar]

87. Shirani F., Salehi-Abargouei A., Azadbakht L. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29:939–947. doi: 10.1016/j.nut.2012.12.021. [PubMed] [CrossRef] [Google Scholar]

88. Millen B.E., Abrams S., Adams-Campbell L., Anderson C.A., Brenna J.T., Campbell W.W., Clinton S., Hu F., Nelson M., Neuhouser M.L., et al. The 2015 Dietary Guidelines Advisory Committee Scientific Report: Development and Major Conclusions. Adv. Nutr. 2016;7:438–444. doi: 10.3945/an.116.012120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Soltani S., Chitsazi M.J., Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018;37:542–550. doi: 10.1016/j.clnu.2017.02.018. [PubMed] [CrossRef] [Google Scholar]

90. Woo J., Yu B.W.M., Chan R.S.M., Leung J. Influence of Dietary Patterns and Inflammatory Markers on Atherosclerosis Using Ankle Brachial Index as a Surrogate. J. Nutr. Health Aging. 2018;22:619–626. doi: 10.1007/s12603-018-1031-7. [PubMed] [CrossRef] [Google Scholar]

91. Rifai L., Pisano C., Hayden J., Sulo S., Silver M.A. Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patientswith heart failure. Bayl. Univ. Med. Cent. Proc. 2015;28:151–156. doi: 10.1080/08998280.2015.11929216. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. d’El-Rei J., Cunha A.R., Trindade M., Neves M.F. Beneficial Effects of Dietary Nitrate on Endothelial Function and Blood Pressure Levels. Int. J. Hypertens. 2016;2016:6791519. doi: 10.1155/2016/6791519. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Marques F.Z., Mackay C.R., Kaye D.M. Beyond gut feelings: How the gut microbiota regulates blood pressure. Nat. Rev. Cardiol. 2018;15:20–32. doi: 10.1038/nrcardio.2017.120. [PubMed] [CrossRef] [Google Scholar]

94. Derkach A., Sampson J., Joseph J., Playdon M.C., Stolzenberg-Solomon R.Z. Effects of dietary sodium on metabolites: The Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study. Am. J. Clin. Nutr. 2017;106:1131–1141. doi: 10.3945/ajcn.116.150136. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Mertens E., Markey O., Geleijnse J.M., Lovegrove J.A., Givens D.I. Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: Evidence from the Caerphilly Prospective Study. Eur. J. Nutr. 2018;57:1245–1258. doi: 10.1007/s00394-017-1408-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Jones N.R.V., Forouhi N.G., Khaw K.T., Wareham N.J., Monsivais P. Accordance to the Dietary Approaches to Stop Hypertension diet pattern and cardiovascular disease in a British, population-based cohort. Eur. J. Epidemiol. 2018;33:235–244. doi: 10.1007/s10654-017-0354-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Saglimbene V.M., Wong G., Craig J.C., Ruospo M., Palmer S.C., Campbell K., Garcia-Larsen V., Natale P., Teixeira-Pinto A., Carrero J.J., et al. The Association of Mediterranean and DASH Diets with Mortality in Adults on Hemodialysis: The DIET-HD Multinational Cohort Study. J. Am. Soc. Nephrol. 2018;29:1741–1751. doi: 10.1681/ASN.2018010008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Neelakantan N., Koh W.P., Yuan J.M., van Dam R.M. Diet-quality indexes are associated with a lower risk of cardiovascular, respiratory, and all-cause mortality among Chinese adults. J. Nutr. 2018;148:1323–1332. doi: 10.1093/jn/nxy094. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Rai S.K., Fung T.T., Lu N., Keller S.F., Curhan G.C., Choi H.K. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: Prospective cohort study. BMJ. 2017;357:j1794. doi: 10.1136/bmj.j1794. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Neale E.P., Batterham M.J., Tapsell L.C. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: A meta-analysis. Nutr. Res. 2016;36:391–401. doi: 10.1016/j.nutres.2016.02.009. [PubMed] [CrossRef] [Google Scholar]

101. Eichelmann F., Schwingshackl L., Fedirko V., Aleksandrova K. Effect of plantbased diets on obesity-related inflammatory profiles: A systematic review and meta-analysis of intervention trials. Obes. Rev. 2016;17:1067–1079. doi: 10.1111/obr.12439. [PubMed] [CrossRef] [Google Scholar]

102. Phillips C.M., Harrington J.M., Perry I.J. Relationship between dietary quality, determined by DASH score, and cardiometabolic health biomarkers: A cross-sectional analysis in adults. Clin. Nutr. 2018;S0261–S5614 doi: 10.1016/j.clnu.2018.08.028. in press. [PubMed] [CrossRef] [Google Scholar]

103. Asemi Z., Samimi M., Tabassi Z., Sabihi S.S., Esmaillzadeh A. A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. Nutrition. 2013;29:619–624. doi: 10.1016/j.nut.2012.11.020. [PubMed] [CrossRef] [Google Scholar]

104. Kawamura A., Kajiya K., Kishi H., Inagaki J., Mitarai M., Oda H., Umemoto S., Kobayashi S. Effects of the DASH-JUMP dietary intervention in Japanese participants with high-normal blood pressure and stage 1 hypertension: An open-label single-arm trial. Hypertens. Res. 2016;39:777–785. doi: 10.1038/hr.2016.76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Saneei P., Hashemipour M., Kelishadi R., Esmaillzadeh A. The Dietary Approaches to Stop Hypertension (DASH) diet affects inflammation in childhood metabolic syndrome: A randomized cross-over clinical trial. Ann. Nutr. Metab. 2014;64:20–27. doi: 10.1159/000358341. [PubMed] [CrossRef] [Google Scholar]

106. Dauchet L., Amouyel P., Hercberg S., Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: A metaanalysis of cohort studies. J. Nutr. 2006;136:2588–2593. doi: 10.1093/jn/136.10.2588. [PubMed] [CrossRef] [Google Scholar]

107. Dauchet L., Amouyel P., Dallongeville J. Fruits, vegetables and coronary heart disease. Nat. Rev. Cardiol. 2009;6:599–608. doi: 10.1038/nrcardio.2009.131. [PubMed] [CrossRef] [Google Scholar]

108. Hosseini B., Berthon B.S., Saedisomeolia A., Starkey M.R., Collison A., Wark P.A.B., Wood L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018;108:136–155. doi: 10.1093/ajcn/nqy082. [PubMed] [CrossRef] [Google Scholar]

109. Graham I., Atar D., Borch-Johnsen K., Boysen G., Burell G., Cifkova R., Dallongeville J., De Backer G., Ebrahim S., Gjelsvik B., et al. European guidelines on cardiovascular disease prevention in clinical practice: Executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts) Eur. Heart J. 2007;28:2375–2414. doi: 10.1093/eurheartj/ehm316. [PubMed] [CrossRef] [Google Scholar]

110. American Heart Association Nutrition Committee. Lichtenstein A.H., Appel L.J., Brands M., Carnethon M., Daniels S., Franch H.A., Franklin B., Kris-Etherton P., Harris W.S., et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96. doi: 10.1161/CIRCULATIONAHA.106.176158. [PubMed] [CrossRef] [Google Scholar]

111. Corley J., Kyle J.A., Starr J.M., McNeill G., Deary I.J. Dietary factors and biomarkers of systemic inflammation in older people: The Lothian Birth Cohort 1936. Br. J. Nutr. 2015;114:1088–1098. doi: 10.1017/S000711451500210X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Holt E.M., Steffen L.M., Moran A., Basu S., Steinberger J., Ross J.A., Hong C.P., Sinaiko A.R. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stressin adolescents. J. Am. Diet Assoc. 2009;109:414–421. doi: 10.1016/j.jada.2008.11.036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Arouca A., Michels N., Moreno L.A., González-Gil E.M., Marcos A., Gómez S., Díaz L.E., Widhalm K., Molnár D., Manios Y., et al. Associations between a Mediterranean diet pattern and inflammatory biomarkers in Europeanadolescents. Eur. J. Nutr. 2018;57:1747–1760. doi: 10.1007/s00394-017-1457-4. [PubMed] [CrossRef] [Google Scholar]

114. Jiang Y., Wu S.H., Shu X.O., Xiang Y.B., Ji B.T., Milne G.L., Cai Q., Zhang X., Gao Y.T., Zheng W., et al. Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. J. Acad. Nutr. Diet. 2014;114:700–708. doi: 10.1016/j.jand.2013.12.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Wongwarawipat T., Papageorgiou N., Bertsias D., Siasos G., Tousoulis D. Olive Oil-related Anti-inflammatory effects on atherosclerosis: Potential clinical implications. Endocr. Metab. Immune Disord. Drug Targets. 2018;18:51–62. doi: 10.2174/1871530317666171116103618. [PubMed] [CrossRef] [Google Scholar]

116. Schwingshackl L., Christoph M., Hoffmann G. Effects of olive oil on markers of inflammation and endothelial function-A systematic review and meta-analysis. Nutrients. 2015;7:7651–7675. doi: 10.3390/nu7095356. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Casas R., Estruch R., Sacanella E. The protective effects of extra virgin olive oil on immune-mediated inflammatory responses. Endocr. Metab. Immune Disord. Drug Targets. 2018;18:23–35. doi: 10.2174/1871530317666171114115632. [PubMed] [CrossRef] [Google Scholar]

118. Schwingshackl L., Hoffmann G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154. doi: 10.1186/1476-511X-13-154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Fitó M., Estruch R., Salas-Salvadõ J., Martínez-Gonzalez M.A., Arós F., Vila J., Corella D., Díaz O., Sáez G., De La Torre R., et al. Effect of the mediterranean diet on heart failure biomarkers: A randomized sample from the PREDIMED trial. Eur. J. Heart Fail. 2014;16:543–550. doi: 10.1002/ejhf.61. [PubMed] [CrossRef] [Google Scholar]

120. Sala-Vila A., Romero-Mamani E.S., Gilabert R., Núñez I., De La Torre R., Corella D., Ruiz-Gutiérrez V., López-Sabater M.C., Pintó X., Rekondo J., et al. Changes in ultrasound-assessed carotid intima-media thickness and plaque with a mediterranean diet: A substudy of the PREDIMED trial. Arterioscler. Thromb. Vasc. Biol. 2014;34:439–445. doi: 10.1161/ATVBAHA.113.302327. [PubMed] [CrossRef] [Google Scholar]

121. Murie-Fernandez M., Irimia P., Toledo E., Martínez-Vila E., Buil-Cosiales P., Serrano-Martínez M., Ruiz-Gutiérrez V., Ros E., Estruch R., Martínez-González M.A. Carotid intima-media thickness changes with mediterranean diet: A randomized trial (PREDIMED-Navarra) Atherosclerosis. 2011;219:158–162. doi: 10.1016/j.atherosclerosis.2011.06.050. [PubMed] [CrossRef] [Google Scholar]

122. Moreno-Luna R., Muñoz-Hernandez R., Miranda M.L., Costa A.F., Jimenez-Jimenez L., Vallejo-Vaz A.J., Muriana F.J.G., Villar J., Stiefel P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 2012;25:1299–1304. doi: 10.1038/ajh.2012.128. [PubMed] [CrossRef] [Google Scholar]

123. Storniolo C.E., Casillas R., Bulló M., Castañer O., Ros E., Sáez G.T., Toledo E., Estruch R., Ruiz-Gutiérrez V., Fitó M., et al. A mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women. Eur. J. Nutr. 2017;56:89–97. doi: 10.1007/s00394-015-1060-5. [PubMed] [CrossRef] [Google Scholar]

124. Murphy K.J. A Mediterranean diet lowers blood pressure and improves endothelial function: Results from the medley randomized intervention trial. Am. J. Clin. Nutr. 2017;105:1305–1313. doi: 10.3945/ajcn.116.146803. [PubMed] [CrossRef] [Google Scholar]

125. Camargo A., Delgado-Lista J., Garcia-Rios A., Cruz-Teno C., Yubero-Serrano E.M., Perez-Martinez P., Gutierrez-Mariscal F.M., Lora-Aguilar P., Rodriguez-Cantalejo F., Fuentes-Jimenez F., et al. Expression of proinflammatory; proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br. J. Nutr. 2012;108:500–508. doi: 10.1017/S0007114511005812. [PubMed] [CrossRef] [Google Scholar]

126. Widmer R.J., Freund M., Flamme J., Sexton J., Lennon R., Romani A., Mulinacci N., Vinceri F., Lerman L.O., Lerman A. Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur. J. Nutr. 2013;52:1223–1231. doi: 10.1007/s00394-012-0433-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Oliveras-Lópeza M.J., Bernáab G., Jurado-Ruizab E., de la Serrana L.G., Martínab F. Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. J. Funct. Foods. 2014;10:475–484. doi: 10.1016/j.jff.2014.07.013. [CrossRef] [Google Scholar]

128. Visioli F., Caruso D., Grande S., Bosisio R., Villa M., Galli G., Sirtori C., Galli C. Virgin Olive Oil Study (VOLOS): Vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur. J. Nutr. 2005;44:121–127. doi: 10.1007/s00394-004-0504-0. [PubMed] [CrossRef] [Google Scholar]

129. Guasch-Ferré M., Liu X., Malik V.S., Sun Q., Willett W.C., Manson J.E., Rexrode K.M., Li Y., Hu F.B., Bhupathiraju S.N. Nut Consumption and Risk of Cardiovascular Disease. J. Am. Coll. Cardiol. 2017;70:2519–2532. doi: 10.1016/j.jacc.2017.09.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Aune D., Keum N., Giovannucci E., Fadnes L.T., Boffetta P., Greenwood D.C., Tonstad S., Vatten L.J., Riboli E., Norat T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14:207. doi: 10.1186/s12916-016-0730-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Mente A., de Koning L., Shannon H.S., Anand S.S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 2009;169:659–669. doi: 10.1001/archinternmed.2009.38. [PubMed] [CrossRef] [Google Scholar]

132. Mozaffarian D., Hao T., Rimm E.B., Willett W.C., Hu F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011;364:2392–2404. doi: 10.1056/NEJMoa1014296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Del Gobbo L.C., Falk M.C., Feldman R., Lewis K., Mozaffarian D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015;102:1347–1356. doi: 10.3945/ajcn.115.110965. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Banel D.K., Hu F.B. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: A meta-analysis and systematic review. Am. J. Clin. Nutr. 2009;90:56–63. doi: 10.3945/ajcn.2009.27457. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Zhou D., Yu H., He F., Reilly K.H., Zhang J., Li S., Zhang T., Wang B., Ding Y., Xi B. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2014;100:270–277. doi: 10.3945/ajcn.113.079152. [PubMed] [CrossRef] [Google Scholar]

136. Guo K., Zhou Z., Jiang Y., Li W., Li Y. Meta-analysis of prospective studies on the effects of nut consumption on hypertension and type 2 diabetes mellitus. J. Diabetes. 2015;7:202–212. doi: 10.1111/1753-0407.12173. [PubMed] [CrossRef] [Google Scholar]

137. Yu Z., Malik V.S., Keum N., Hu F.B., Giovannucci E.L., Stampfer M.J., Willett W.C., Fuchs C.S., Bao Y. Associations between nut consumption and inflammatory biomarkers. Am. J. Clin. Nutr. 2016;104:722–728. doi: 10.3945/ajcn.116.134205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Neale E.P., Tapsell L.C., Guan V., Batterham M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7:e016863. doi: 10.1136/bmjopen-2017-016863. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Xiao Y., Xia J., Ke Y., Cheng J., Yuan J., Wu S., Lv Z., Huang S., Kim J.H., Wong S.Y., et al. Effects of nut consumption on selected inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Nutrition. 2018;54:129–143. doi: 10.1016/j.nut.2018.02.017. [PubMed] [CrossRef] [Google Scholar]

140. Casas-Agustench P., López-Uriarte P., Bulló M., Ros E., Cabré-Vila J.J., Salas-Salvadó J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markersin patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011;21:126–135. doi: 10.1016/j.numecd.2009.08.005. [PubMed] [CrossRef] [Google Scholar]

141. Hernández-Alonso P., Salas-Salvadó J., Baldrich-Mora M., Juanola-Falgarona M., Bulló M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: A randomized clinical trial. Diabetes Care. 2014;37:3098–3105. doi: 10.2337/dc14-1431. [PubMed] [CrossRef] [Google Scholar]

142. Liu J.F., Liu Y.H., Chen C.M., Chang W.H., Chen C.Y. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: A randomized crossover controlled feeding trial. Eur. J. Nutr. 2013;52:927–935. doi: 10.1007/s00394-012-0400-y. [PubMed] [CrossRef] [Google Scholar]

143. Chiva-Blanch G., Arranz S., Lamuela-Raventos R.M., Estruch R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: Evidences from human studies. Alcohol Alcohol. 2013;48:270–277. doi: 10.1093/alcalc/agt007. [PubMed] [CrossRef] [Google Scholar]

144. Haseeb S., Alexander B., Baranchuk A. Wine and cardiovascular health: A comprehensive review. Circulation. 2017;136:1434–1448. doi: 10.1161/CIRCULATIONAHA.117.030387. [PubMed] [CrossRef] [Google Scholar]

145. Costanzo S., Di Castelnuovo A., Donati M.B., Iacoviello L., de Gaetano G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011;26:833–850. doi: 10.1007/s10654-011-9631-0. [PubMed] [CrossRef] [Google Scholar]

146. Haseeb S., Alexander B., Santi R.L., Liprandi A.S., Baranchuk A. What’s in wine? A clinician’s perspective. Trends Cardiovasc. Med. 2018;S1050–S1738 doi: 10.1016/j.tcm.2018.06.010. in press. [PubMed] [CrossRef] [Google Scholar]

147. Janssen I., Landay A.L., Ruppert K., Powell L.H. Moderate wine consumption is associated with lower hemostatic and inflammatory risk factorsover 8 years: The study of women’s health across the nation (SWAN) Nutr. Aging. 2014;2:91–99. doi: 10.3233/NUA-130034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Estruch R., Sacanella E., Badia E., Antúnez E., Nicolás J.M., Fernández-Solá J., Rotilio D., de Gaetano G., Rubin E., Urbano-Márquez A. Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: A prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis. 2004;175:117–123. doi: 10.1016/j.atherosclerosis.2004.03.006. [PubMed] [CrossRef] [Google Scholar]

149. Chiva-Blanch G., Urpi-Sarda M., Llorach R., Rotches-Ribalta M., Guillén M., Casas R., Arranz S., Valderas-Martinez P., Portoles O., Corella D., et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2012;95:326–334. doi: 10.3945/ajcn.111.022889. [PubMed] [CrossRef] [Google Scholar]

150. Roth I., Casas R., Medina-Remón A., Lamuela-Raventós R.M., Estruch R. Consumption of aged white wine modulates cardiovascular risk factors via circulating endothelial progenitor cells and inflammatory biomarkers. Clin. Nutr. 2018;S0261–S5614:30219-X. doi: 10.1016/j.clnu.2018.06.001. [PubMed] [CrossRef] [Google Scholar]

151. Estruch R., Sacanella E., Mota F., Chiva-Blanch G., Antúnez E., Casals E., Deulofeu R., Rotilio D., Andres-Lacueva C., Lamuela-Raventos R.M., et al. Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: A randomized cross-over trial. Nutr. Metab. Cardiovasc. Dis. 2011;21:46–53. doi: 10.1016/j.numecd.2009.07.006. [PubMed] [CrossRef] [Google Scholar]

152. De Gaetano G., Constanzo S., Castelnuovo A.D., Badimon L., Bejko D., Alkerwi A., Chiva-Blanch G., Estruch R., La Vecchia C., Panico S. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016;26:443–467. doi: 10.1016/j.numecd.2016.03.007. [PubMed] [CrossRef] [Google Scholar]

153. Wannamethee S.G., Shaper A.G. Type of alcoholic drink and risk of major coronary heart disease event and all-cause mortality. Am. J. Public Health. 1999;89:685–690. doi: 10.2105/AJPH.89.5.685. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Chiva-Blanch G., Magraner E., Condines X., Valderas-Martínez P., Roth I., Arranz S., Casas R., Navarro M., Hervas A., Sisó A., et al. Effects of alcohol and polyphenols from beer on atherosclerotic biomarkers in high cardiovascular risk men: A randomized feeding trial. Nutr. Metab. Cardiovasc. Dis. 2015;24:36–45. doi: 10.1016/j.numecd.2014.07.008. [PubMed] [CrossRef] [Google Scholar]

155. Sánchez-Muniz F.J. Dietary fibre and cardiovascular health. Nutr. Hosp. 2012;27:31–45. doi: 10.1590/S0212-16112012000100005. [PubMed] [CrossRef] [Google Scholar]

156. Huang T., Xu M., Lee A., Cho S., Qi L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015;13:59. doi: 10.1186/s12916-015-0338-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Yang Y., Zhao L.G., Wu Q.J., Ma X., Xiang Y.B. Association between dietary fiber and lower risk of all-cause mortality: A meta-analysis of cohort studies. Am. J. Epidemiol. 2015;181:83–91. doi: 10.1093/aje/kwu257. [PubMed] [CrossRef] [Google Scholar]

158. McRae M.P. Dietary fiber is beneficial for the prevention of cardiovascular disease: An umbrella review of Meta-analyses. J. Chiropr. Med. 2017;16:289–299. doi: 10.1016/j.jcm.2017.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Effects of Dietary Fiber Intake on Cardiovascular Risk Factors. [(accessed on 26 October 2018)]; Available online: https://www.intechopen.com/books/recent-advances-in-cardiovascular-risk-factors/effects-of-dietary-fiber-intake-on-cardiovascular-risk-factors

160. Ma Y., Hébert J.R., Li W., Bertone-Johnson E.R., Olendzki B., Pagoto S.L., Tinker L., Rosal M.C., Ockene I.S., Ockene J.K., et al. Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition. 2008;24:941–949. doi: 10.1016/j.nut.2008.04.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Nguyen N.T., Magno C.P., Lane K.T., Hinojosa M.W., Lane J.S. Definition of Metabolic Syndrome-Scott M. Grundy. Association of Hypertension, Diabetes, Dyslipidemia, and Metabolic Syndrome with Obesity: Findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J. Am. Coll. Surg. 2008;207:928–934. doi: 10.1016/j.jamcollsurg.2008.08.022. [PubMed] [CrossRef] [Google Scholar]

162. Qi L., van Dam R.M., Liu S., Franz M., Mantzoros C., Hu F.B. Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care. 2006;29:207–211. doi: 10.2337/diacare.29.02.06.dc05-1903. [PubMed] [CrossRef] [Google Scholar]

163. Estruch R., Martínez-González M.A., Corella D., Basora-Gallisá J., Ruiz-Gutiérrez V., Covas M.I., Fiol M., Gómez-Gracia E., López-Sabater M.C., Escoda R., et al. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J. Epidemiol. Community Health. 2009;63:582–588. doi: 10.1136/jech.2008.082214. [PubMed] [CrossRef] [Google Scholar]

164. Masters R.C., Liese A.D., Haffner S.M., Wagenknecht L.E., Hanley A.J. Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J. Nutr. 2010;140:587–594. doi: 10.3945/jn.109.116640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. North C.J., Venter C.S., Jerling J.C. The effects of dietary fibre on C-reactive protein, an inflammation marker predicting cardiovascular disease. Eur. J. Clin. Nutr. 2009;63:921–933. doi: 10.1038/ejcn.2009.8. [PubMed] [CrossRef] [Google Scholar]

166. Esposito K., Nappo F., Giugliano F., Di Palo C., Ciotola M., Barbieri M., Paolisso G., Giugliano D. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2003;78:1135–1140. doi: 10.1093/ajcn/78.6.1135. [PubMed] [CrossRef] [Google Scholar]

167. Kopf J.C., Suhr M.J., Clarke J., Eyun S.I., Riethoven J.M., Ramer-Tait A.E., Rose D.J. Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: A randomized controlled trial. Nutr. J. 2018;17:72. doi: 10.1186/s12937-018-0381-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Toole J.F., Malinow M.R., Chambless L.E., Spence J.D., Pettigrew L.C., Howard V.J., Sides E.G., Wang C.H., Stampfer M. Lowering homocysteine in patients with ischemic strole to prevent recurrent stroke, myocardial infarction and death: The Vitamin Intervention for Stroke Prevention (VISP) randomized controlled-trial. JAMA. 2004;291:565–575. doi: 10.1001/jama.291.5.565. [PubMed] [CrossRef] [Google Scholar]

169. Spence J.D., Bang H., Chambles L.E., Stampfer M.J. Vitamin Intervention for Stroke Prevention trial: An efficacy analysis. Stroke. 2005;36:2404–2409. doi: 10.1161/01.STR.0000185929.38534.f3. [PubMed] [CrossRef] [Google Scholar]

170. Spence J.D. Homocysteine: Call off the funeral. Stroke. 2006;37:282–283. doi: 10.1161/01.STR.0000199621.28234.e2. [PubMed] [CrossRef] [Google Scholar]

171. Root M.M., McGinn M.C., Nieman D.C., Henson D.A., Heinz S.A., Shanely R.A., Knab A.M., Jin F. Combined fruit and vegetable intake is correlated with improved inflammatory and oxidant status from a cross-sectional study in a community setting. Nutrients. 2012;4:29–41. doi: 10.3390/nu4010029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Helmersson J., Arnlöv J., Larsson A., Basu S. Low dietary intake of alpha-carotene, beta-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br. J. Nutr. 2009;101:1775–1782. doi: 10.1017/S0007114508147377. [PubMed] [CrossRef] [Google Scholar]

173. Wang L., Gaziano J.M., Norkus E.P., Buring J.E., Sesso H.D. Associations of plasma carotenoids with risk factors and biomarkers related to cardiovascular disease in middle-aged and older women. Am. J. Clin. Nutr. 2008;88:747–754. doi: 10.1093/ajcn/88.3.747. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Lee H., Lee I.S., Choue R. Obesity, inflammation and diet. Pediatr. Gastroenterol. Hepatol. Nutr. 2013;16:143–152. doi: 10.5223/pghn.2013.16.3.143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Gammoh N.Z., Rink L. Zinc in Infection and Inflammation. Nutrients. 2017;9:624. doi: 10.3390/nu9060624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Mazidi M., Rezaie P., Banach M. Effect of magnesium supplements on serum C-reactive protein: A systematic review and meta-analysis. Arch. Med. Sci. 2018;14:707–716. doi: 10.5114/aoms.2018.75719. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Simental-Mendia L.E., Sahebkar A., Rodriguez-Moran M., Zambrano-Galvan G., Guerrero-Romero F. Effect of magnesium supplementation on plasma C-reactive protein concentrations: A systematic review and Meta-analysis of randomized controlled trials. Curr. Pharm. Des. 2017;23:4678–4686. doi: 10.2174/1381612823666170525153605. [PubMed] [CrossRef] [Google Scholar]

178. Rodriguez A.J., Mousa A., Ebeling P.R., Scott D., de Courten B. Effects of vitamin D supplementation on inflammatory markers in heart failure: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2018;8:1169. doi: 10.1038/s41598-018-19708-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Saboori S., Shab-Bidar S., Speakman J.R., Rad E.Y., Djafarian K. Effect of vitamin E supplementation on serum C-reactive protein level: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2015;69:867–873. doi: 10.1038/ejcn.2014.296. [PubMed] [CrossRef] [Google Scholar]

180. De Oliveira Otto M.C., Alonso A., Lee D.H., Delclos G.L., Jenny N.S., Jiang R., Lima J.A., Symanski E., Jacobs D.R., Jr., Nettleton J.A. Dietary micronutrient intakes are associated with markers of inflammation but not with markers of subclinical atherosclerosis. J. Nutr. 2011;141:1508–1515. doi: 10.3945/jn.111.138115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Wang Q., Zhu Z., Liu Y., Tu X., He J. Relationship between serum vitamin D levels and inflammatory markers in acute stroke patients. Brain Behav. 2018;8:e00885. doi: 10.1002/brb3.885. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Pilz S., Tomaschitz A., März W., Drechsler C., Ritz E., Zittermann A., Cavalier E., Pieber T.R., Lappe J.M., Grant W.B., et al. Vitamin D, cardiovascular disease and mortality. Clin. Endocrinol. 2011;75:575–584. doi: 10.1111/j.1365-2265.2011.04147.x. [PubMed] [CrossRef] [Google Scholar]

183. Brewer L.C., Michos E.D., Reis J.P. Vitamin D in atherosclerosis, vascular disease, and endothelial function. Curr. Drug Targets. 2011;12:54–60. doi: 10.2174/138945011793591617. [PubMed] [CrossRef] [Google Scholar]

184. Oh J., Weng S., Felton S.K., Bhandare S., Riek A., Butler B., Proctor B.M., Petty M., Chen Z., Schechtman K.B., et al. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptakein patients with type 2 diabetes mellitus. Circulation. 2009;120:687–698. doi: 10.1161/CIRCULATIONAHA.109.856070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Tabesh M., Azadbakht L., Faghihimani E., Tabesh M., Esmaillzadeh A. Calcium-Vitamin D cosupplementation influences circulating inflammatory biomarkers and adipocytokines in vitamin D-insufficient diabetics: A randomized controlled clinical trial. J. Clin. Endocrinol. Metab. 2014;99:E2485–E2493. doi: 10.1210/jc.2014-1977. [PubMed] [CrossRef] [Google Scholar]

186. Shargorodsky M., Debby O., Matas Z., Zimlichman R. Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors. Nutr. Metab. 2010;7:55. doi: 10.1186/1743-7075-7-55. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Ellulu M.S., Rahmat A., Patimah I., Khaza’ai H., Abed Y. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: A randomized controlled trial. Drug Des. Dev. Ther. 2015;9:3405–3412. doi: 10.2147/DDDT.S83144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Christen W.G., Cook N.R., Van Denburgh M., Zaharris E., Albert C.M., Manson J.E. Effect of Combined Treatment with folic acid, Vitamin B6, and Vitamin B12 on plasmabiomarkers of inflammation and endothelial dysfunction in women. J. Am. Heart Assoc. 2018;7:e008517. doi: 10.1161/JAHA.117.008517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Massaro M., Scoditti E., Carluccio M.A., De Caterina R. Nutraceuticals and prevention of atherosclerosis: Focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc. Ther. 2010;28:e13–e19. doi: 10.1111/j.1755-5922.2010.00211.x. [PubMed] [CrossRef] [Google Scholar]

190. Hamer M., Steptoe A. Influence of specific nutrients on progression of atherosclerosis, vascular function, haemostasis and inflammation in coronary heart disease patients: A systematic review. Br. J. Nutr. 2006;95:849–859. doi: 10.1079/BJN20061741. [PubMed] [CrossRef] [Google Scholar]

191. Burke M.F., Burke F.M., Soffer D.E. Review of cardiometabolic effects of prescription Omega-3 fatty acids. Curr. Atheroscler. Rep. 2017;19:6. doi: 10.1007/s11883-017-0700-z. [PubMed] [CrossRef] [Google Scholar]

192. Calder P.C. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res. 2012;56:1073–1080. doi: 10.1002/mnfr.201100710. [PubMed] [CrossRef] [Google Scholar]

193. Wang Q., Liang X., Wang L., Lu X., Huang J., Cao J., Li H., Gu D. Effect of omega-3 fatty acids supplementation on endothelial function: A meta-analysis of randomized controlled trials. Atherosclerosis. 2012;221:536–543. doi: 10.1016/j.atherosclerosis.2012.01.006. [PubMed] [CrossRef] [Google Scholar]

194. Leslie M.A., Cohen D.J.A., Liddle D.M., Robinson L.E., Ma D.W.L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis. 2015;14:53. doi: 10.1186/s12944-015-0049-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Yagi S., Aihara K.I., Fukuda D., Takashima A., Hara T., Hotchi J., Ise T., Yamaguchi K., Tobiume T., Iwase T., et al. Effects of Docosahexaenoic Acid on the Endothelial Function in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2015;22:447–454. doi: 10.5551/jat.26914. [PubMed] [CrossRef] [Google Scholar]

196. Kelley D.S., Adkins Y. Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. Proc. Nutr. Soc. 2012;71:322–331. doi: 10.1017/S0029665112000080. [PubMed] [CrossRef] [Google Scholar]

197. Cawood A.L., Ding R., Napper F.L., Young R.H., Williams J.A., Ward M.J., Gudmundsen O., Vige R., Payne S.P., Ye S., et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreasedplaque inflammation and increased stability. Atherosclerosis. 2010;212:252–259. doi: 10.1016/j.atherosclerosis.2010.05.022. [PubMed] [CrossRef] [Google Scholar]

198. Thies F., Garry J.M.C., Yaqoob P., Rerkasem K., Williams J., Shearman C.P., Gallagher P.J., Calder P.C., Grimble R.F. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: A randomised controlled trial. Lancet. 2003;361:477–485. doi: 10.1016/S0140-6736(03)12468-3. [PubMed] [CrossRef] [Google Scholar]

199. Robinson J.G., Stone N.J. Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. Am. J. Cardiol. 2006;98:39i–49i. doi: 10.1016/j.amjcard.2005.12.026. [PubMed] [CrossRef] [Google Scholar]

200. Kaliora A.C., Dedoussis G.V. Natural antioxidant compounds in risk factors for CVD. Pharmacol. Res. 2007;56:99–109. doi: 10.1016/j.phrs.2007.04.018. [PubMed] [CrossRef] [Google Scholar]

201. Valderas-Martinez P., Chiva-Blanch G., Casas R., Arranz S., Martínez-Huélamo M., Urpi-Sarda M., Torrado X., Corella D., Lamuela-Raventós R.M., Estruch R. Tomato sauce enriched with olive oil exerts greater effects on cardiovascular disease risk factors than raw tomato and tomato sauce: A randomized trial. Nutrients. 2016;8:170. doi: 10.3390/nu8030170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Mozos I., Stoian D., Caraba A., Malainer C., Horbańczuk J.O., Atanasov A.G. Lycopene and Vascular Health. Front. Pharmacol. 2018;9:521. doi: 10.3389/fphar.2018.00521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Costa-Rodrigues J., Pinho O., Monteiro P.R.R. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 2018;245:1148–1153. doi: 10.1016/j.foodchem.2017.11.055. [PubMed] [CrossRef] [Google Scholar]

204. Cheng H.M., Koutsidis G., Lodge J.K., Ashor A., Siervo M., Lara J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis. 2017;257:100–108. doi: 10.1016/j.atherosclerosis.2017.01.009. [PubMed] [CrossRef] [Google Scholar]

205. Biddle M.J., Lennie T.R., Bricker G.V., Kopec R.E., Schwartz S.J., Moser D.K. Lycopene dietary intervention: A pilot study in patients with heart failure. Cardiovasc. Nurs. 2016;30:205–212. doi: 10.1097/JCN.0000000000000108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Wang Y., Chung S.J., McCullough M.L., Song W.O., Fernandez M.L., Koo S.I., Chun O.K. Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations. J. Nutr. 2014;144:1067–1074. doi: 10.3945/jn.113.184317. [PubMed] [CrossRef] [Google Scholar]

207. Xu X.R., Zou Z.Y., Huang Y.M., Xiao X., Ma L., Lin X.M. Serum carotenoids in relation to risk factors for development of atherosclerosis. Clin. Biochem. 2012;45:1357–1361. doi: 10.1016/j.clinbiochem.2012.07.101. [PubMed] [CrossRef] [Google Scholar]

208. Thies F., Masson L.F., Rudd A., Vaughan N., Tsang C., Brittenden J., Simpson W.G., Duthie S., Horgan G.W., Duthie G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012;95:1013–1022. doi: 10.3945/ajcn.111.026286. [PubMed] [CrossRef] [Google Scholar]

209. Ras R.T., Geleijnse J.M., Trautwein E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014;112:214–219. doi: 10.1017/S0007114514000750. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Cabra C.E., Simas-TorresKlein M.R. Phytosterols in the Treatment of Hypercholesterolemia and Prevention of Cardiovascular Diseases. Arq. Brasil. Cardiol. 2017;109:475–482. doi: 10.5935/abc.20170158. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Demonty I., Ras R.T., van der Knaap H.C., Duchateau G.S., Meijer L., Zock P.L., Geleijnse J.M., Trautwein E.A. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J. Nutr. 2009;139:271–284. doi: 10.3945/jn.108.095125. [PubMed] [CrossRef] [Google Scholar]

212. Rocha V.Z., Ras R.T., Gagliardi A.C., Mangili L.C., Trautwein E.A., Santos R.D. Effects of phytosterols on markers of inflammation: A systematic review and meta-analysis. Atherosclerosis. 2016;48:76–83. doi: 10.1016/j.atherosclerosis.2016.01.035. [PubMed] [CrossRef] [Google Scholar]

213. Ras R.T., Fuchs D., Koppenol W.P., Schalkwijk C.G., Otten-Hofman A., Garczarek U., Greyling A., Wagner F., Trautwein E.A. Effect of a plant sterol-enriched spread on biomarkers of endothelial dysfunction and low grade inflammation in hypercholesterolaemic subjects. J. Nutr. Sci. 2016;5:e44. doi: 10.1017/jns.2016.40. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Devaraj S., Jialal I., Rockwood J., Zak D. Effect of orange juice and beverage with phytosterols on cytokines and PAI1 activity. Clin. Nutr. 2011;30:668–671. doi: 10.1016/j.clnu.2011.03.009. [PubMed] [CrossRef] [Google Scholar]

215. Heggen E., Kirkhus B., Pedersen J.I., Tonstad S. Effects of margarine enriched with plant sterol esters from rapeseed and tall oils on markers of endothelial function, inflammation and hemostasis. Scand. J. Clin. Lab. Investig. 2015;75:189–192. doi: 10.3109/00365513.2014.992040. [PubMed] [CrossRef] [Google Scholar]

216. Mozaffarian D., Wu J.H.Y. Flavonoids, Dairy Foods and Cardiovascular and Metabolic Health: A review of emerging biologic pathways. Circ. Res. 2018;122:369–384. doi: 10.1161/CIRCRESAHA.117.309008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Tressera-Rimbau A., Arranz S., Eder M., Vallverdú-Queralt A. Dietary Polyphenols in the Prevention of Stroke. Oxid. Med. Cell. Longev. 2017;2017:7467962. doi: 10.1155/2017/7467962. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. González-Gallego J., García-Mediavilla M.V., Sánchez-Campos S., Tuñón M.J. Fruit polyphenols immunity and inflammation. Br. J. Nutr. 2010;104:S15–S27. doi: 10.1017/S0007114510003910. [PubMed] [CrossRef] [Google Scholar]

219. Bahramsoltani R., Ebrahimi F., Farzaei M.H., Baratpourmoghaddam A., Ahmadi P., Rostamiasrabadi P., Rasouli Amirabadi A.H., Rahimi R. Dietary polyphenols for atherosclerosis: A comprehensive review and future perspectives. Crit. Rev. Food Sci. Nutr. 2017:1–19. doi: 10.1080/10408398.2017.1360244. [PubMed] [CrossRef] [Google Scholar]

220. Witkowska A.M., Waśkiewicz A., Zujko M.E., Szcześniewska D., Pająk A., Stepaniak U., Drygas W. Dietary polyphenol intake but not the dietary total antioxidant capacity is inversely related to cardiovascular disease in postmenopausal polish women: Results of WOBASZ and WOBASZ II Studies. Oxid. Med. Cell. Longev. 2017;2017:5982809. doi: 10.1155/2017/5982809. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Chiva-Blanch G., Badimon L. Effects of polyphenol intake on metabolic syndrome: Current Evidences from Human Trials. Oxid. Med. Cell. Longev. 2017;2017:5812401. doi: 10.1155/2017/5812401. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Miranda A.M., Steluti J., Fisberg R.M., Marchioni D.M. Association between Coffee Consumption and Its Polyphenols with Cardiovascular Risk Factors: A Population-Based Study. Nutrients. 2017;9:276. doi: 10.3390/nu9030276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Ding M., Bhupathiraju S.N., Satija A., van Dam R.M., Hu F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129:643–659. doi: 10.1161/CIRCULATIONAHA.113.005925. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

224. Larsson S.C., Orsini N. Coffee consumption and risk of stroke: A dose-response meta-analysis of prospective studies. Am. J. Epidemiol. 2011;174:993–1001. doi: 10.1093/aje/kwr226. [PubMed] [CrossRef] [Google Scholar]

225. Shen L., Song L.G., Ma H., Jin C.N., Wang J.A., Xiang M.X. Tea consumption and risk of stroke: A dose-response meta-analysis of prospective studies. J. Zhejiang Univ. Sci. B. 2012;13:652–662. doi: 10.1631/jzus.B1201001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Manach C., Mazur A., Scalbert A. Polyphenols and Prevention of cardiovascular diseases. Curr. Opin. Lipidol. 2005;16:77–84. doi: 10.1097/00041433-200502000-00013. [PubMed] [CrossRef] [Google Scholar]

227. Hooper L., Kroon P.A., Rimm E.B., Cohn J.S., Harvey I., Le Cornu K.A., Ryder J.J., Hall W.L., Cassidy A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008;88:38–50. doi: 10.1093/ajcn/88.1.38. [PubMed] [CrossRef] [Google Scholar]

228. Van Bussel B.C.T., Henry R.M.A., Schalkwijk C.G., Dekker J.M., Nijpels G., Feskens E.J.M., Stehouwer C.D.A. Alcohol and red wine consumption but not fruit vegetables fish or dairy products are associated with less endothelial dysfunction and less low-grade inflammation: The Hoorn Study. Eur. J. Nutr. 2018;57:1409–1419. doi: 10.1007/s00394-017-1420-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Huang H., Chen G., Liao D., Zhu Y., Xue X. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. Sci. Rep. 2016;6:23625. doi: 10.1038/srep23625. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Luís Â., Domingues F., Pereira L. Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018;9:740–757. doi: 10.1039/C7FO01551H. [PubMed] [CrossRef] [Google Scholar]

231. De Bacquer D., Clays E., Delanghe J., De Backer G. Epidemiological evidence for an association between habitual tea consumption and markers of chronic inflammation. Atherosclerosis. 2006;189:428–435. doi: 10.1016/j.atherosclerosis.2005.12.028. [PubMed] [CrossRef] [Google Scholar]

232. Vazquez-Agell M., Urpi-Sarda M., Sacanella E., Camino-Lopez S., Chiva-Blanch G., Llorente-Cortes V., Tobias E., Roura E., Andres-Lacueva C., Lamuela-Raventos R.M., et al. Cocoa consumption reduces NF-kB activation in peripheral blood mononuclear cells in humans. Nutr. Metab. Cardiovasc. Dis. 2013;23:257–263. doi: 10.1016/j.numecd.2011.03.015. [PubMed] [CrossRef] [Google Scholar]

233. Monagas M., Khan N., Andres-Lacueva C., Casas R., Urpí-Sardà M., Llorach R., Lamuela-Raventós R.M., Estruch R. Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2009;90:1144–1150. doi: 10.3945/ajcn.2009.27716. [PubMed] [CrossRef] [Google Scholar]

234. Basu A., Du M., Sanchez K., Leyva M.J., Betts N.M., Blevins S., Wu M., Aston C.E., Lyons T.J. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolicsyndrome. Nutrition. 2011;27:206–213. doi: 10.1016/j.nut.2010.01.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Zhang X., Zhu Y., Song F., Yao Y., Ya F., Li D., Ling W., Yang Y. Effects of purified anthocyanin supplementation on platelet chemokines in hypocholesterolemic individuals: A randomized controlled trial. Nutr. Metab. 2016;13:86. doi: 10.1186/s12986-016-0146-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Song F., Zhu Y., Shi Z., Tian J., Deng X., Ren J., Andrews M.C., Ni H., Ling W., Yang Y. Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: Involving the signaling pathway of PI3K–Akt. Thromb. Haemost. 2014;112:981–991. doi: 10.1160/th13-12-1002. [PubMed] [CrossRef] [Google Scholar]

237. Davinelli S., Bertoglio J.C., Zarrelli A., Pina R., Scapagnini G. A Randomized clinical trial evaluating the efficacy of an anthocyanin-maqui berry extract (Delphinol®) on oxidative stress biomarkers. J. Am. Coll. Nutr. 2015;34:28–33. doi: 10.1080/07315724.2015.1080108. [PubMed] [CrossRef] [Google Scholar]

238. Hall W.L., Vafeiadou K., Hallund J., Bügel S., Koebnick C., Reimann M., Ferrari M., Branca F., Talbot D., Dadd T., et al. Soy-isoflavone-enriched foods and inflammatory biomarkers of cardiovascular disease risk in postmenopausal women: Interactions with genotype and equol production. Am. J. Clin. Nutr. 2005;82:1260–1268. doi: 10.1093/ajcn/82.6.1260. [PubMed] [CrossRef] [Google Scholar]

239. Hodis H.N., Mack W.J., Kono N., Azen S.P., Shoupe D., Hwang-Levine J., Petitti D., Whitfield-Maxwell L., Yan M., Franke A.A., et al. Isoflavone soy protein supplementation and atherosclerosis progression in healthy postmenopausal women: A randomized controlled trial. Stroke. 2011;42:3168–3175. doi: 10.1161/STROKEAHA.111.620831. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Tomé-Carneiro J., Gonzálvez M., Larrosa M., García-Almagro F.J., Avilés-Plaza F., Parra S., Yáñez-Gascón M.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A., et al. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res. 2012;56:810–821. doi: 10.1002/mnfr.201100673. [PubMed] [CrossRef] [Google Scholar]

241. Agarwal B., Campen M.J., Channell M.M., Wherry S.J., Varamini B., Davis J.G., Baur J.A., Smoliga J.M. Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. Int. J. Cardiol. 2013;166:246–248. doi: 10.1016/j.ijcard.2012.09.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Seyyedebrahimi S., Khodabandehloo H., Nasli Esfahani E., Meshkani R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol. 2018;55:341–353. doi: 10.1007/s00592-017-1098-3. [PubMed] [CrossRef] [Google Scholar]


Page 2

Potential inflammatory effects of Mediterranean and DASH diet on CVD.

Pro- and Anti-Inflammatory Markers and GenesLeukocyte ExpressionOxidative Stress Markers
MeDietsVCAM-1, sICAM-1, RANTES, MIP-1β, TNF-α, TNFR-60, IL-1β, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-18, MMP-9, VEGF, CRP, TCF7L2, APOA2, CETP, COX-2, MCP-1, LRP1Lymphocytes: CD11a, CD49d, CD40
Monocytes: CD11a, CD11b, CD49d, CD40
MDA, oxLDL
DASH dietsICAM-1, IL-6, CRP, PAI-1--