What force is responsible for the repulsion between two positively charged particles

What force is responsible for the repulsion between two positively charged particles

What force is responsible for the repulsion between two positively charged particles

Any influence (PUSH OR PULL) that gives energy to an object, sometimes causing a change in the motion of the object.

We use forces in our lives every day . . . When you kick a ball, your foot makes the ball move by imparting a force on the ball. 

We recognize forces that occur when one object touches another, but can forces between two objects occur if they DO NOT touch? ? ? 

 

What force is responsible for the repulsion between two positively charged particles

Forces, such as gravity and magnetism, pull falling objects (pine cones and leaves) towards the earth and push the like poles of magnets apart. 

What force is responsible for the repulsion between two positively charged particles

What force is responsible for the repulsion between two positively charged particles

What force is responsible for the repulsion between two positively charged particles

·       A force that combines the effects of electrical charge and magnetism. The electromagnetic force can either attract or repel the particles on which it acts. Oppositely charged particles attract each other, while like particles repel one another.

·       Electrons are kept in the orbit around the nucleus by the electromagnetic force, because the nucleus in the center of the atom is positively charged and attracts the negatively charged electrons.

QUESTION—If all the protons inside the nucleus are the same charge and repel, what keeps them from bursting and exploding the atom? ? ?  How do they stay together? ? ?

ANSWER—

THE STRONG FORCE—the greatest of the four forces!

·       The strong forces oppose the electromagnetic force of repulsion between protons. Like ”glue” the strong force keeps the protons together to form the nucleus.

What force is responsible for the repulsion between two positively charged particles

·       The strong forces and electromagnetic forces both hold the atom together.

What force is responsible for the repulsion between two positively charged particles

·       Weak forces are important because they are responsible for stabilizing particles through the process of radioactive decay, in which a neutron in the nucleus changes into a proton and an electron.

Gravity is the force most familiar to us in our everyday lives—(apples, leaves, and planets)

What force is responsible for the repulsion between two positively charged particles

·       Gravity is the force of attraction exerted between all objects in nature. Gravity causes apples and leaves to fall to the ground from the trees, as well as the planets to remain in orbit around the sun.

·        Gravity is most easily observed in the behavior of large objects.  Inside the tiny nucleus of an atom, the effect of gravity is small compared to the effects of the other three forces. Therefore, gravity is the weakest of the four forces!!!

Conclusion:

What keeps the atom together? Who are the Fantastic Four?

The atom is comprised of three major particles—protons, neutrons and electrons.  There are four forces (Electromagnetic, Strong, Weak, and Gravity) that are responsible for the behavior of the particles and thus keep the atom together.

 

What force is responsible for the repulsion between two positively charged particles

The four fundamental forces act upon us every day, whether we realize it or not. From playing basketball, to launching a rocket into space, to sticking a magnet on your refrigerator - all the forces that all of us experience every day can be whittled down to a critical quartet: Gravity, the weak force, electromagnetism, and the strong force. These forces govern everything that happens in the universe.

Gravity is the attraction between two objects that have mass or energy, whether this is seen in dropping a rock from a bridge, a planet orbiting a star or the moon causing ocean tides. Gravity is probably the most intuitive and familiar of the fundamental forces, but it's also been one of the most challenging to explain.

Isaac Newton was the first to propose the idea of gravity, supposedly inspired by an apple falling from a tree. He described gravity as a literal attraction between two objects. Centuries later, Albert Einstein suggested, through his theory of general relativity, that gravity is not an attraction or a force. Instead, it's a consequence of objects bending space-time. A large object works on space-time a bit like how a large ball placed in the middle of a sheet affects that material, deforming it and causing other, smaller objects on the sheet to fall toward the middle. 

Though gravity holds planets, stars, solar systems and even galaxies together, it turns out to be the weakest of the fundamental forces, especially at the molecular and atomic scales. Think of it this way: How hard is it to lift a ball off the ground? Or to lift your foot? Or to jump? All of those actions are counteracting the gravity of the entire Earth. And at the molecular and atomic levels, gravity has almost no effect relative to the other fundamental forces.

Related: There's a giant mystery hiding inside every atom in the universe

The weak force, also called the weak nuclear interaction, is responsible for particle decay. This is the literal change of one type of subatomic particle into another. So, for example, a neutrino (opens in new tab)that strays close to a neutron can turn the neutron into a proton while the neutrino becomes an electron.

Physicists describe this interaction through the exchange of force-carrying particles called bosons. Specific kinds of bosons are responsible for the weak force, electromagnetic force and strong force. In the weak force, the bosons are charged particles called W and Z bosons. When subatomic particles such as protons, neutrons and electrons come within 10^-18 meters, or 0.1% of the diameter of a proton, of one another, they can exchange these bosons. As a result, the subatomic particles decay into new particles, according to Georgia State University's HyperPhysics website (opens in new tab)

The weak force is critical for the nuclear fusion reactions that power the sun and produce the energy needed for most life forms here on Earth. It's also why archaeologists can use carbon-14 to date ancient bone, wood and other formerly living artifacts. Carbon-14 has six protons and eight neutrons; one of those neutrons decays into a proton to make nitrogen-14, which has seven protons and seven neutrons. This decay happens at a predictable rate, allowing scientists to determine how old such artifacts are.

What force is responsible for the repulsion between two positively charged particles

The weak force is critical for the nuclear fusion reactions that power the sun and produce the energy needed for most life forms here on Earth. This significant solar flare peaked at 10:29 a.m. EDT on July 3, 2021 (Image credit: NASA )

Electromagnetic force

The electromagnetic force, also called the Lorentz force, acts between charged particles, like negatively charged electrons and positively charged protons. Opposite charges attract one another, while like charges repel. The greater the charge, the greater the force. And much like gravity, this force can be felt from an infinite distance (albeit the force would be very, very small at that distance).

As its name indicates, the electromagnetic force consists of two parts: the electric force and the magnetic force (opens in new tab). At first, physicists described these forces as separate from one another, but researchers later realized that the two are components of the same force. 

The electric component acts between charged particles whether they're moving or stationary, creating a field by which the charges can influence each other. But once set into motion, those charged particles begin to display the second component, the magnetic force. The particles create a magnetic field around them as they move. So when electrons zoom through a wire to charge your computer or phone or turn on your TV, for example, the wire becomes magnetic.

Related: Is our Sun going into hibernation?

Electromagnetic forces are transferred between charged particles through the exchange of massless, force-carrying bosons called photons, which are also the particle components of light.  The force-carrying photons that swap between charged particles, however, are a different manifestation of photons. They are virtual and undetectable, even though they are technically the same particles as the real and detectable version, according to the University of Tennessee, Knoxville (opens in new tab).

The electromagnetic force is responsible for some of the most commonly experienced phenomena: friction, elasticity, the normal force and the force holding solids together in a given shape. It's even responsible for the drag that birds, planes and even Superman experience while flying. These actions can occur because of charged (or neutralized) particles interacting with one another. The normal force that keeps a book on top of a table (instead of gravity pulling the book through to the ground), for example, is a consequence of electrons in the table's atoms repelling electrons in the book's atoms. 

What force is responsible for the repulsion between two positively charged particles

The force that keeps a book on top of a table (instead of gravity pulling the book through to the ground), is a consequence of the electromagnetic force: Electrons in the table's atoms repel electrons in the book's atoms. (Image credit: NASA/Shutterstock)

The strong nuclear force, also called the strong nuclear interaction, is the strongest of the four fundamental forces of nature. It's 6 thousand trillion trillion trillion (that’s 39 zeroes after 6!) times stronger than the force of gravity, according to the HyperPhysics website (opens in new tab). And that's because it binds the fundamental particles of matter (opens in new tab) together to form larger particles. It holds together the quarks that make up protons and neutrons, and part of the strong force also keeps the protons and neutrons of an atom's nucleus together.

Much like the weak force, the strong force operates only when subatomic particles are extremely close to one another. They have to be somewhere within 10^-15 meters from each other, or roughly within the diameter of a proton.

The strong force is odd, though, because unlike any of the other fundamental forces, it gets weaker as subatomic particles move closer together. It actually reaches maximum strength when the particles are farthest away from each other, according to Fermilab (opens in new tab). Once within range, massless charged bosons called gluons transmit the strong force between quarks and keep them "glued" together. A tiny fraction of the strong force called the residual strong force acts between protons and neutrons. Protons in the nucleus repel one another because of their similar charge, but the residual strong force can overcome this repulsion, so the particles stay bound in an atom's nucleus (opens in new tab).

Related: NASA, DOE fund three nuclear thermal space propulsion concepts

Unifying nature

The outstanding question of the four fundamental forces is whether they're actually manifestations of just a single great force of the universe. If so, each of them should be able to merge with the others, and there's already evidence that they can. 

Physicists Sheldon Glashow and Steven Weinberg from Harvard University with Abdus Salam from Imperial College London won the Nobel Prize in Physics (opens in new tab) in 1979 for unifying the electromagnetic force with the weak force to form the concept of the electroweak force (opens in new tab). Physicists working to find a so-called grand unified theory aim to unite the electroweak force with the strong force to define an electronuclear force, which models have predicted but researchers have not yet observed. The final piece of the puzzle would then require unifying gravity with the electronuclear force to develop the so-called theory of everything (opens in new tab), a theoretical framework that could explain the entire universe.

Physicists, however, have found it pretty difficult to merge the microscopic world with the macroscopic one. At large and especially astronomical scales, gravity dominates and is best described by Einstein's theory of general relativity. But at molecular, atomic or subatomic scales, quantum mechanics (opens in new tab) best describes the natural world. And so far, no one has come up with a good way to merge those two worlds. 

What force is responsible for the repulsion between two positively charged particles

Many physicists aim to unite the fundamental forces under a single, unified theory — a theoretical framework that could explain the entire universe. (Image credit: Shutterstock)

Physicists studying quantum gravity aim to describe the force in terms of the quantum world, which could help with the merge. Fundamental to that approach would be the discovery of gravitons, the theoretical force-carrying boson of the gravitational force. Gravity is the only fundamental force that physicists can currently describe without using force-carrying particles. But because descriptions of all the other fundamental forces require force-carrying particles, scientists expect gravitons must exist at the subatomic level — researchers just haven't found these particles yet.

Further complicating the story is the invisible realm of dark matter and dark energy (opens in new tab), which make up roughly 95% of the universe. It's unclear whether dark matter and energy consist of a single particle or a whole set of particles that have their own forces and messenger bosons. 

The primary messenger particle of current interest is the theoretical dark photon, which would mediate interactions between the visible and invisible universe. If dark photons exist, they'd be the key to detecting the invisible world of dark matter and could lead to the discovery of a fifth fundamental force (opens in new tab). So far, though, there's no evidence that dark photons (opens in new tab) exist, and some research has offered strong evidence that these particles don't exist (opens in new tab)

Additional resources: