What are some important safety and ethical issues raised by this use of recombinant DNA technology Brainly?

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Because gene therapy involves making changes to the body’s basic building blocks (DNA), it raises many unique ethical concerns. The ethical questions surrounding gene therapy and genome editing include:

  • How can “good” and “bad” uses of these technologies be distinguished?

  • Who decides which traits are normal and which constitute a disability or disorder?

  • Will the high costs of gene therapy make it available only to the wealthy?

  • Could the widespread use of gene therapy make society less accepting of people who are different?

  • Should people be allowed to use gene therapy to enhance basic human traits such as height, intelligence, or athletic ability?

Current research on gene therapy treatment has focused on targeting body (somatic) cells such as bone marrow or blood cells. This type of genetic alteration cannot be passed to a person’s children. Gene therapy could be targeted to egg and sperm cells (germ cells), however, which would allow the genetic changes to be passed to future generations. This approach is known as germline gene therapy.

The idea of these germline alterations is controversial. While it could spare future generations in a family from having a particular genetic disorder, it might affect the development of a fetus in unexpected ways or have long-term side effects that are not yet known. Because people who would be affected by germline gene therapy are not yet born, they can’t choose whether to have the treatment. Because of these ethical concerns, the U.S. Government does not allow federal funds to be used for research on germline gene therapy in people.

1. Kumar S., Kumar A. Role of genetic engineering in agriculture. Plant Archives. 2015;15:1–6. [Google Scholar]

2. Cardi T., Stewart C. N., Jr. Progress of targeted genome modification approaches in higher plants. Plant Cell Reports. 2016;35(7):1401–1416. doi: 10.1007/s00299-016-1975-1. [PubMed] [CrossRef] [Google Scholar]

3. Lomedico P. T. Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: a rapid expression assay for cloned genes. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(19):5798–5802. doi: 10.1073/pnas.79.19.5798. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Ullah M. W., Khattak W. A., Ul-Islam M., Khan S., Park J. K. Encapsulated yeast cell-free system: a strategy for cost-effective and sustainable production of bio-ethanol in consecutive batches. Biotechnology and Bioprocess Engineering. 2015;20(3):561–575. doi: 10.1007/s12257-014-0855-1. [CrossRef] [Google Scholar]

5. Ullah M. W., Khattak W. A., Ul-Islam M., Khan S., Park J. K. Bio-ethanol production through simultaneous saccharification and fermentation using an encapsulated reconstituted cell-free enzyme system. Biochemical Engineering Journal. 2014;91:110–119. doi: 10.1016/j.bej.2014.08.006. [CrossRef] [Google Scholar]

6. Khattak W. A., Ul-Islam M., Ullah M. W., Yu B., Khan S., Park J. K. Yeast cell-free enzyme system for bio-ethanol production at elevated temperatures. Process Biochemistry. 2014;49(3):357–364. doi: 10.1016/j.procbio.2013.12.019. [CrossRef] [Google Scholar]

7. Khattak W. A., Ullah M. W., Ul-Islam M., et al. Developmental strategies and regulation of cell-free enzyme system for ethanol production: a molecular prospective. Applied Microbiology and Biotechnology. 2014;98(23):9561–9578. doi: 10.1007/s00253-014-6154-0. [PubMed] [CrossRef] [Google Scholar]

8. Galambos L., Sturchio J. L. Pharmaceutical firms and the transition to biotechnology: a study in strategic innovation. Business History Review. 1998;72(2):250–278. doi: 10.2307/3116278. [CrossRef] [Google Scholar]

9. Steinberg F. M., Raso J. Biotech pharmaceuticals and biotherapy: an overview. Journal of Pharmacy and Pharmaceutical Science. 1998;1(2):48–59. [PubMed] [Google Scholar]

10. Liu W., Yuan J. S., Stewart C. N., Jr. Advanced genetic tools for plant biotechnology. Nature Reviews Genetics. 2013;14(11):781–793. doi: 10.1038/nrg3583. [PubMed] [CrossRef] [Google Scholar]

11. Venter M. Synthetic promoters: genetic control through cis engineering. Trends in Plant Science. 2007;12(3):118–124. doi: 10.1016/j.tplants.2007.01.002. [PubMed] [CrossRef] [Google Scholar]

12. Berk A., Zipursky S. L. Molecular Cell Biology. Vol. 4. New York, NY, USA: WH Freeman; 2000. [Google Scholar]

13. Bazan-Peregrino M., Sainson R. C. A., Carlisle R. C., et al. Combining virotherapy and angiotherapy for the treatment of breast cancer. Cancer Gene Therapy. 2013;20(8):461–468. doi: 10.1038/cgt.2013.41. [PubMed] [CrossRef] [Google Scholar]

14. Li L.-X., Zhang Y.-L., Zhou L., et al. Antitumor efficacy of a recombinant adenovirus encoding endostatin combined with an E1B55KD-deficient adenovirus in gastric cancer cells. Journal of Translational Medicine. 2013;11(1, article 257) doi: 10.1186/1479-5876-11-257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Méndez C., Salas J. A. On the generation of novel anticancer drugs by recombinant DNA technology: the use of combinatorial biosynthesis to produce novel drugs. Combinatorial Chemistry — High Throughput Screening. 2003;6(6):513–526. doi: 10.2174/138620703106298699. [PubMed] [CrossRef] [Google Scholar]

16. Fauser B. C. J. M., Mannaerts B. M. J. L., Devroey P., Leader A., Boime I., Baird D. T. Advances in recombinant DNA technology: corifollitropin alfa, a hybrid molecule with sustained follicle-stimulating activity and reduced injection frequency. Human Reproduction Update. 2009;15(3):309–321. doi: 10.1093/humupd/dmn065. [PubMed] [CrossRef] [Google Scholar]

17. Merten O., Gaillet B. Viral vectors for gene therapy and gene modification approaches. Biochemical Engineering Journal. 2016;108:98–115. doi: 10.1016/j.bej.2015.09.005. [CrossRef] [Google Scholar]

18. Merten O.-W., Schweizer M., Chahal P., Kamen A. A. Manufacturing of viral vectors for gene therapy: part I. Upstream processing. Pharmaceutical Bioprocessing. 2014;2(2):183–203. doi: 10.4155/pbp.14.16. [CrossRef] [Google Scholar]

19. Ginn S. L., Alexander I. E., Edelstein M. L., Abedi M. R., Wixon J. Gene therapy clinical trials worldwide to 2012—an update. Journal of Gene Medicine. 2013;15(2):65–77. doi: 10.1002/jgm.2698. [PubMed] [CrossRef] [Google Scholar]

20. Rivero-Müller A., Lajić S., Huhtaniemi I. Assisted large fragment insertion by Red/ET-recombination (ALFIRE)—an alternative and enhanced method for large fragment recombineering. Nucleic Acids Research. 2007;35(10, article e78) doi: 10.1093/nar/gkm250. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Metzger L. E., IV, Raetz C. R. H. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry. 2009;48(48):11559–11571. doi: 10.1021/bi901750f. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Masson E. A., Patmore J. E., Brash P. D., et al. Pregnancy outcome in Type 1 diabetes mellitus treated with insulin lispro (Humalog) Diabetic Medicine. 2003;20(1):46–50. doi: 10.1046/j.1464-5491.2003.00840.x. [PubMed] [CrossRef] [Google Scholar]

23. Patra A. K., Mukhopadhyay R., Mukhija R., Krishnan A., Garg L. C., Panda A. K. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coil. Protein Expression and Purification. 2000;18(2):182–192. doi: 10.1006/prep.1999.1179. [PubMed] [CrossRef] [Google Scholar]

24. Macallan D. C., Baldwin C., Mandalia S., et al. Treatment of altered body composition in HIV-associated lipodystrophy: comparison of rosiglitazone, pravastatin, and recombinant human growth hormone. HIV Clinical Trials. 2008;9(4):254–268. doi: 10.1310/hct0904-254. [PubMed] [CrossRef] [Google Scholar]

25. Pennisi E. The CRISPR craze. Science. 2013;341(6148):833–836. doi: 10.1126/science.341.6148.833. [PubMed] [CrossRef] [Google Scholar]

26. Wang R., Li M., Gong L., Hu S., Xiang H. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica . Nucleic Acids Research. 2016;44(9):4266–4277. doi: 10.1093/nar/gkw260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Shmakov S., Abudayyeh O. O., Makarova K. S., et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell. 2015;60(3):385–397. doi: 10.1016/j.molcel.2015.10.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Gasiunas G., Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: holy grail of genome editing? Trends in Microbiology. 2013;21(11):562–567. doi: 10.1016/j.tim.2013.09.001. [PubMed] [CrossRef] [Google Scholar]

29. Mohanraju P., Makarova K. S., Zetsche B., Zhang F., Koonin E. V., van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016;353(6299) doi: 10.1126/science.aad5147. [PubMed] [CrossRef] [Google Scholar]

30. Vyas V. K., Barrasa M. I., Fink G. R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Science Advances. 2015;1(3) doi: 10.1126/sciadv.1500248.e1500248 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Hynes A. P., Labrie S. J., Moineau S. Programming native CRISPR arrays for the generation of targeted immunity. mBio. 2016;7(3):p. e00202-16. doi: 10.1128/mbio.00202-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Hille F., Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1707) doi: 10.1098/rstb.2015.0496.20150496 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Makarova K. S., Wolf Y. I., Alkhnbashi O. S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology. 2015;13(11):722–736. doi: 10.1038/nrmicro3569. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Rath D., Amlinger L., Rath A., Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–128. doi: 10.1016/j.biochi.2015.03.025. [PubMed] [CrossRef] [Google Scholar]

35. Liu G., She Q., Garrett R. A. Diverse CRISPR-Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated Sulfolobus species. Nucleic Acids Research. 2016;44(9):4233–4242. doi: 10.1093/nar/gkw286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Gaj T., Gersbach C. A., Barbas C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013;31(7):397–405. doi: 10.1016/j.tibtech.2013.04.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Blackburn P. R., Campbell J. M., Clark K. J., Ekker S. C. The CRISPR system—keeping zebrafish gene targeting fresh. Zebrafish. 2013;10(1):116–118. doi: 10.1089/zeb.2013.9999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Yancopoulos G. D., Davis S., Gale N. W., Rudge J. S., Wiegand S. J., Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–248. doi: 10.1038/35025215. [PubMed] [CrossRef] [Google Scholar]

39. Jain R. K., Au P., Tam J., Duda D. G., Fukumura D. Engineering vascularized tissue. Nature Biotechnology. 2005;23(7):821–823. doi: 10.1038/nbt0705-821. [PubMed] [CrossRef] [Google Scholar]

40. Naoto K., Dai F., Oliver G., Patrick A., Jeffrey S. S., Rakesh K. J. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428:138–139. [PubMed] [Google Scholar]

41. Ferrer-Miralles N., Domingo-Espín J., Corchero J., Vázquez E., Villaverde A. Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories. 2009;8, article 17 doi: 10.1186/1475-2859-8-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Kamionka M. Engineering of therapeutic proteins production in Escherichia coli . Current Pharmaceutical Biotechnology. 2011;12(2):268–274. doi: 10.2174/138920111794295693. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Eriksson S. Enzymatic synthesis of nucleoside triphosphates. Nucleoside Triphosphates and their Analogs: Chemistry, Biotechnology, and Biological Applications. 2016;23 [Google Scholar]

44. Urban D. J., Roth B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annual Review of Pharmacology and Toxicology. 2015;55:399–417. doi: 10.1146/annurev-pharmtox-010814-124803. [PubMed] [CrossRef] [Google Scholar]

45. Tzartos J. S., Friese M. A., Craner M. J., et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. The American Journal of Pathology. 2008;172(1):146–155. doi: 10.2353/ajpath.2008.070690. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Rabe K., Lehrke M., Parhofer K. G., Broedl U. C. Adipokines and insulin resistance. Molecular Medicine. 2008;14(11-12):741–751. doi: 10.2119/2008-00058.Rabe. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Olempska-Beer Z. S., Merker R. I., Ditto M. D., DiNovi M. J. Food-processing enzymes from recombinant microorganisms—a review. Regulatory Toxicology and Pharmacology. 2006;45(2):144–158. doi: 10.1016/j.yrtph.2006.05.001. [PubMed] [CrossRef] [Google Scholar]

48. Lian Z.-X., Ma Z.-S., Wei J., Liu H. Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochemistry. 2012;47(2):201–208. doi: 10.1016/j.procbio.2011.10.031. [CrossRef] [Google Scholar]

49. Bang S. H., Jang A., Yoon J., et al. Evaluation of whole lysosomal enzymes directly immobilized on titanium (IV) oxide used in the development of antimicrobial agents. Enzyme and Microbial Technology. 2011;49(3):260–265. doi: 10.1016/j.enzmictec.2011.06.004. [PubMed] [CrossRef] [Google Scholar]

50. Thallinger B., Prasetyo E. N., Nyanhongo G. S., Guebitz G. M. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal. 2013;8(1):97–109. doi: 10.1002/biot.201200313. [PubMed] [CrossRef] [Google Scholar]

51. Torres C. E., Lenon G., Craperi D., Wilting R., Blanco Á. Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology. 2011;92(1):95–103. doi: 10.1007/s00253-011-3305-4. [PubMed] [CrossRef] [Google Scholar]

52. Ma J. K.-C., Drake P. M. W., Christou P. The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics. 2003;4(10):794–805. doi: 10.1038/nrg1177. [PubMed] [CrossRef] [Google Scholar]

53. Gamuyao R., Chin J. H., Pariasca-Tanaka J., et al. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature. 2012;488(7412):535–539. doi: 10.1038/nature11346. [PubMed] [CrossRef] [Google Scholar]

54. Hiruma K., Gerlach N., Sacristán S., et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell. 2016;165(2):464–474. doi: 10.1016/j.cell.2016.02.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Jin S., Daniell H. The engineered chloroplast genome just got smarter. Trends in Plant Science. 2015;20(10):622–640. doi: 10.1016/j.tplants.2015.07.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Oldenburg D. J., Bendich A. J. DNA maintenance in plastids and mitochondria of plants. Frontiers in Plant Science. 2015;6, article 883 doi: 10.3389/fpls.2015.00883. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Henry D., Choun-Sea L., Ming Y., Wan-Jung C. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology. 2016;17, article 134 doi: 10.1186/s13059-016-1004-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Apel W., Bock R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiology. 2009;151(1):59–66. doi: 10.1104/pp.109.140533. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Oikawa T., Maeda H., Oguchi T., et al. The birth of a black rice gene and its local spread by introgression. Plant Cell. 2015;27(9):2401–2414. doi: 10.1105/tpc.15.00310. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Oono Y., Yazawa T., Kawahara Y., et al. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0096946.e96946 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. European Commission. Restrictions of geographical scope of GMO applications/authorisations: Member States demands and outcomes, 2015, http://ec.europa.eu/food/plant/gmo/authorisation.

62. Cavazzana-Calvo M., Hacein-Bey S., De Saint Basile G., et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–672. doi: 10.1126/science.288.5466.669. [PubMed] [CrossRef] [Google Scholar]

63. Hacein-Bey-Abina S., Le Deist F., Carlier F., et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. The New England Journal of Medicine. 2002;346(16):1185–1193. doi: 10.1056/nejmoa012616. [PubMed] [CrossRef] [Google Scholar]

64. Howe S. J., Mansour M. R., Schwarzwaelder K., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. Journal of Clinical Investigation. 2008;118(9):3143–3150. doi: 10.1172/JCI35798. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Blaese R. M., Culver K. W., Miller A. D., et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science. 1995;270(5235):475–480. doi: 10.1126/science.270.5235.475. [PubMed] [CrossRef] [Google Scholar]

66. Aiuti A., Vai S., Mortellaro A., et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nature Medicine. 2002;8(5):423–425. doi: 10.1038/nm0502-423. [PubMed] [CrossRef] [Google Scholar]

67. Cartier N., Hacein-Bey-Abina S., Bartholomae C. C., et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–823. doi: 10.1126/science.1171242. [PubMed] [CrossRef] [Google Scholar]

68. Montini E., Biffi A., Calabria A., et al. Integration site analysis in a clinical trial of lentiviral vector based haematopoietic stem cell gene therapy for meatchromatic leukodystrophy. Human Gene Therapy. 2012;23, article A13 [Google Scholar]

69. Morgan R. A., Dudley M. E., Wunderlich J. R., et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–129. doi: 10.1126/science.1129003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Robbins P. F., Morgan R. A., Feldman S. A., et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. Journal of Clinical Oncology. 2011;29(7):917–924. doi: 10.1200/JCO.2010.32.2537. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Adair J. E., Beard B. C., Trobridge G. D., et al. Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Science Translational Medicine. 2012;4(133) doi: 10.1126/scitranslmed.3003425.133ra57 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Ott M. G., Schmidt M., Schwarzwaelder K., et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Medicine. 2006;12(4):401–409. doi: 10.1038/nm1393. [PubMed] [CrossRef] [Google Scholar]

73. Stein S., Ott M. G., Schultze-Strasser S., et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nature Medicine. 2010;16(2):198–204. doi: 10.1038/nm.2088. [PubMed] [CrossRef] [Google Scholar]

74. Zhang J., Tarbet E. B., Toro H., Tang D.-C. C. Adenovirus-vectored drug-vaccine duo as a potential driver for conferring mass protection against infectious diseases. Expert Review of Vaccines. 2011;10(11):1539–1552. doi: 10.1586/erv.11.141. [PubMed] [CrossRef] [Google Scholar]

75. Lam P., Khan G., Stripecke R., et al. The innovative evolution of cancer gene and cellular therapies. Cancer Gene Therapy. 2013;20(3):141–149. doi: 10.1038/cgt.2012.93. [PubMed] [CrossRef] [Google Scholar]

76. Aiuti A., Biasco L., Scaramuzza S., et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148) doi: 10.1126/science.1233151.1233151 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Restifo N. P., Dudley M. E., Rosenberg S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews Immunology. 2012;12(4):269–281. doi: 10.1038/nri3191. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Kershaw M. H., Westwood J. A., Darcy P. K. Gene-engineered T cells for cancer therapy. Nature Reviews Cancer. 2013;13(8):525–541. doi: 10.1038/nrc3565. [PubMed] [CrossRef] [Google Scholar]

79. Danilo M., Eusebio M., Carla P. C., et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516(7531):423–427. doi: 10.1038/nature13902. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Jun L., Shifeng P., Mindy H. H., Nicholas N. Targeting Wnt-Driven Cancer through the Inhibition of Porcupine by LGK974. Cambridge, UK: MRC Laboratory of Molecular Biology; 2013. [PMC free article] [PubMed] [Google Scholar]

81. Kreijtz J. H. C. M., Wiersma L. C. M., De Gruyter H. L. M., et al. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model. The Journal of Infectious Diseases. 2015;211(5):791–800. doi: 10.1093/infdis/jiu528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Hughes J. P., Alusi G., Wang Y. Viral gene therapy for head and neck cancer. The Journal of Laryngology & Otology. 2015;129(4):314–320. doi: 10.1017/s0022215114003247. [PubMed] [CrossRef] [Google Scholar]

83. Smith J. D. Human Macrophage Genetic Engineering. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016;36(1):2–3. doi: 10.1161/ATVBAHA.115.306796. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Stöger E., Vaquero C., Torres E., et al. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Molecular Biology. 2000;42(4):583–590. doi: 10.1023/A:1006301519427. [PubMed] [CrossRef] [Google Scholar]

85. Vaquero C., Sack M., Schuster F., et al. A carcinoembryonic antigen-specific diabody produced in tobacco. The FASEB journal. 2002;16(3):408–410. [PubMed] [Google Scholar]

86. Karrer E., Bass S. H., Whalen R., Patten P. A. U.S. Patent No. 8,252,727, 2012.

87. Ionescu R. M., Vlasak J., Price C., Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. Journal of Pharmaceutical Sciences. 2008;97(4):1414–1426. doi: 10.1002/jps.21104. [PubMed] [CrossRef] [Google Scholar]

88. Adams C. W., Allison D. E., Flagella K., et al. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunology, Immunotherapy. 2006;55(6):717–727. doi: 10.1007/s00262-005-0058-x. [PubMed] [CrossRef] [Google Scholar]

89. McCormick A. A., Reddy S., Reinl S. J., et al. Plant-produced idiotype vaccines for the treatment of non-Hodgkin's lymphoma: safety and immunogenicity in a phase I clinical study. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(29):10131–10136. doi: 10.1073/pnas.0803636105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Bendandi M., Marillonnet S., Kandzia R., et al. Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin's lymphoma. Annals of Oncology. 2010;21(12):2420–2427. doi: 10.1093/annonc/mdq256. [PubMed] [CrossRef] [Google Scholar]

91. Kathuria S., Sriraman R., Nath R., et al. Efficacy of plant-produced recombinant antibodies against HCG. Human Reproduction. 2002;17(8):2054–2061. doi: 10.1093/humrep/17.8.2054. [PubMed] [CrossRef] [Google Scholar]

92. Rostami-Hodjegan A., Tucker G. T. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nature Reviews Drug Discovery. 2007;6(2):140–148. doi: 10.1038/nrd2173. [PubMed] [CrossRef] [Google Scholar]

93. Nicholson J. K., Holmes E., Wilson I. D. Gut microorganisms, mammalian metabolism and personalized health care. Nature Reviews Microbiology. 2005;3(5):431–438. doi: 10.1038/nrmicro1152. [PubMed] [CrossRef] [Google Scholar]

94. Fan Q. R., Hendrickson W. A. Structure of human follicle-stimulating hormone in complex with its receptor. Nature. 2005;433(7023):269–277. doi: 10.1038/nature03206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Assidi M., Dufort I., Ali A., et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biology of Reproduction. 2008;79(2):209–222. doi: 10.1095/biolreprod.108.067686. [PubMed] [CrossRef] [Google Scholar]

96. Hu Z.-B., Du M. Hairy root and its application in plant genetic engineering. Journal of Integrative Plant Biology. 2006;48(2):121–127. doi: 10.1111/j.1744-7909.2006.00121.x. [CrossRef] [Google Scholar]

97. Ling C.-Q., Wang L.-N., Wang Y., et al. The roles of traditional Chinese medicine in gene therapy. Journal of integrative medicine. 2014;12(2):67–75. doi: 10.1016/S2095-4964(14)60019-4. [PubMed] [CrossRef] [Google Scholar]

98. Mazzoni L., Perez-Lopez P., Giampieri F., et al. The genetic aspects of berries: from field to health. Journal of the Science of Food and Agriculture. 2016;96(2):365–371. doi: 10.1002/jsfa.7216. [PubMed] [CrossRef] [Google Scholar]

99. Ripp S., Nivens D. E., Ahn Y., et al. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environmental Science and Technology. 2000;34(5):846–853. doi: 10.1021/es9908319. [CrossRef] [Google Scholar]

100. Sayler G. S., Cox C. D., Burlage R., et al. Novel Approaches for Bioremediation of Organic Pollution. New York, NY, USA: Springer; 1999. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control; pp. 241–254. [CrossRef] [Google Scholar]

101. King J. M. H., DiGrazia P. M., Applegate B., et al. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990;249(4970):778–781. doi: 10.1126/science.249.4970.778. [PubMed] [CrossRef] [Google Scholar]

102. Chatterjee J., Meighen E. A. Biotechnological applications of bacterial bioluminescence (lux) genes. Photochemistry and Photobiology. 1995;62(4):641–650. doi: 10.1111/j.1751-1097.1995.tb08711.x. [CrossRef] [Google Scholar]

103. Matsui K., Togami J., Mason J. G., Chandler S. F., Tanaka Y. Enhancement of phosphate absorption by garden plants by genetic engineering: a new tool for phytoremediation. BioMed Research International. 2013;2013:7. doi: 10.1155/2013/182032.182032 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D., Rogers S. G., Fraley R. T. A simple and general method for transferring genes into plants. Science. 1985;227(4691):1229–1230. doi: 10.1126/science.227.4691.1229. [PubMed] [CrossRef] [Google Scholar]

105. Tamura M., Togami J., Ishiguro K., et al. Regeneration of transformed verbena (verbena × hybrida) by Agrobacterium tumefaciens . Plant Cell Reports. 2003;21(5):459–466. doi: 10.1007/s00299-002-0541-1. [PubMed] [CrossRef] [Google Scholar]

106. Jez J. M., Lee S. G., Sherp A. M. The next green movement: plant biology for the environment and sustainability. Science. 2016;353(6305):1241–1244. doi: 10.1126/science.aag1698. [PubMed] [CrossRef] [Google Scholar]

107. Clemens S., Ma J. F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology. 2016;67(1):489–512. doi: 10.1146/annurev-arplant-043015-112301. [PubMed] [CrossRef] [Google Scholar]

108. Kim E.-J., Youn J.-H., Park C.-H., et al. Oligomerization between BSU1 family members potentiates brassinosteroid signaling in Arabidopsis . Molecular Plant. 2016;9(1):178–181. doi: 10.1016/j.molp.2015.09.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Mani D., Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology. 2014;11(3):843–872. doi: 10.1007/s13762-013-0299-8. [CrossRef] [Google Scholar]

110. Ullah M. W., Ul-Islam M., Khan S., Kim Y., Park J. K. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydrate Polymers. 2016;136:908–916. doi: 10.1016/j.carbpol.2015.10.010. [PubMed] [CrossRef] [Google Scholar]

111. Ullah M. W., Ul-Islam M., Khan S., Kim Y., Park J. K. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydrate Polymers. 2015;132:286–294. doi: 10.1016/j.carbpol.2015.06.037. [PubMed] [CrossRef] [Google Scholar]

112. Ullah M. W., Khattak W. A., Ul-Islam M., Khan S., Park J. K. Metabolic engineering of synthetic cell-free systems: strategies and applications. Biochemical Engineering Journal. 2016;105:391–405. doi: 10.1016/j.bej.2015.10.023. [CrossRef] [Google Scholar]

113. Tiwari A., Pandey A. Cyanobacterial hydrogen production—a step towards clean environment. International Journal of Hydrogen Energy. 2012;37(1):139–150. doi: 10.1016/j.ijhydene.2011.09.100. [CrossRef] [Google Scholar]

114. Savakis P., Hellingwerf K. J. Engineering cyanobacteria for direct biofuel production from CO2 . Current Opinion in Biotechnology. 2015;33:8–14. doi: 10.1016/j.copbio.2014.09.007. [PubMed] [CrossRef] [Google Scholar]

115. Leang C., Malvankar N. S., Franks A. E., Nevin K. P., Lovley D. R. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy and Environmental Science. 2013;6:1901–1908. doi: 10.1039/c3ee40441b. [CrossRef] [Google Scholar]

116. Vajo Z., Fawcett J., Duckworth W. C. Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocrine Reviews. 2001;22(5):706–717. doi: 10.1210/er.22.5.706. [PubMed] [CrossRef] [Google Scholar]

117. DeJong J. M., Liu Y., Bollon A. P., et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae . Biotechnology and Bioengineering. 2006;93(2):212–224. doi: 10.1002/bit.20694. [PubMed] [CrossRef] [Google Scholar]

118. Walker G. M. Desk Encyclopedia of Microbiology. 2nd. Elsevier; 2009. Yeasts. [Google Scholar]

119. Méndez C., Weitnauer G., Bechthold A., Salas J. A. Structure alteration of polyketides by recombinant DNA technology in producer organisms prospects for the generation of novel pharmaceutical drugs. Current Pharmaceutical Biotechnology. 2000;1(4):355–395. doi: 10.2174/1389201003378861. [PubMed] [CrossRef] [Google Scholar]

120. Misra A. Challenges in Delivery of Therapeutic Genomics and Proteomics. Amsterdam, Netherlands: Elsevier; 2010. [Google Scholar]


Page 2

Current DNA assembly methods for the synthesis of large DNA molecules. The table has been reproduced from Nature reviews 14: 781–793, with permission from Nature Publishing Group.

MethodMechanismOverhang (bp)Scar (bp)CommentsExamples of applications
BioBricksType IIP restriction endonuclease88Sequentially assembles small numbers of sequencesConstruction of a functional gene expressing enhanced cyan fluorescent protein
BglBricksType IIP restriction endonuclease66Uses a highly efficient and commonly used restriction endonuclease, the recognition sequences of which are not blocked by the most common DNA methylasesConstruction of constitutively active gene-expression devices and chimeric, multidomain protein fusions
Pairwise selectionType IIS restriction endonuclease654Requires attachment tags at each end of fragments to act as promoters for antibiotic resistance markers; rapid, as a liquid culture system is usedAssembly of a 91 kb fragment from 1-2 kb fragments
GoldenGateType IIS restriction endonuclease40Allows large-scale assembly; ligations are done in parallel one-step assembly of 2-3 fragmentOne-step assembly of 2-3 fragments
Overlapping PCROverlap00Uses overlapping primers for the PCR amplification of 1–3 kb-long fragmentsUsually used for 1–3 kb-long fragments, for example, for gene cassette construction
CPECOverlap20–750Uses a single polymerase for the assembly of multiple inserts into any vector in a one-step reaction in vitroOne-step assembly of four 0.17–3.2 kb-long PCR fragments
GatewayOverlap200Uses a specific recombinase for small-scale assemblyOne-step assembly of three 0.8–2.3 kb-long fragments
USEROverlapUp to 7080Replaces a thymidine with a uracil in the PCR primers, which leaves 3′ overhangs for cloning after cleaving by a uracil exonucleaseOne-step assembly of three 0.6–1.5 kb-long fragments
InFusionOverlap150Uses an enzyme mix for parallel assembly through a “chew-back-and-anneal” methodOne-step assembly of three 0.2–3.8 kb-long fragments
SLICOverlap>300(i) Uses a T4 DNA polymerase through a chew-back method in the absence of dNTPs
(ii) Uses Recombinase A∗ to stabilize the annealed fragments and avoid in vitro ligation
(iii) Allows the parallel assembly of several hundred base-long fragments
Generation of a ten-way assembly of 300–400 bp-long PCR fragments
GibsonOverlap40–4000Uses enzymatic “cocktails” to chew back and anneal for the parallel assembly of several kilobase-long fragmentsAssembly of the 1.08 Mb Mycoplasma mycoides JCVI-syn1.0 genome