Two factors which cause global climate change are listed below factor 1 sea level rising

1) Baede, A.P.M. (ed) (2007) Annex I glossary. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.). Cambridge University Press, Cambridge, pp. 941–954. [Google Scholar]

2) IPCC (1990) Climate Change: The IPCC Scientific Assessment. Report Prepared for IPCC by Working Group I (eds. Houghton, J.T., Lenkins, G.J. and Ephraums, J.J.). Cambridge University Press, Cambridge. [Google Scholar]

3) IPCC (1995) Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (eds. Houghton, J.T., Merira Filho, L.G., Callender, B.A., Harris, N., Kattenberg, A. and Maskell, K.). Cambridge University Press, Cambridge. [Google Scholar]

4) IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A.). Cambridge University Press, Cambridge. [Google Scholar]

5) IPCC (2007a) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, (eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.). Cambridge University Press, Cambridge. [Google Scholar]

6) Cazenave A., Llovel W. (2010) Contemporary sea level rise. Annu. Rev. Mar. Sci. 2 (1), 145–173 doi:10.1146/annurev-marine-120308-081105 [PubMed] [Google Scholar]

7) Church J.A., White N.J. (2011) Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32 (4–5), 585–602 doi:10.1007/s10712-011-9119-1 [Google Scholar]

8) Ray R.D., Douglas B.C. (2011) Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr. 91, 496–515 [Google Scholar]

9) Project Team for Comprehensive Projection of Climate Change Impacts (2008) Global warming impacts on Japan –latest scientific findings–, pp. 1–95. http://www.nies.go.jp/s4_impact/pdf/S-4_report_2008eng.pdf

10) Project Team for Comprehensive Projection of Climate Change Impacts (2009) Global warming impacts on Japan –long-term climate stabilization level and impact risk assessment–, pp. 1–40. http://www.nies.go.jp/s4_impact/pdf/S-4_report_2009eng.pdf

11) Woodworth P.L., Player R. (2003) The permanent service for mean sea level: An update to the 21st century. J. Coastal Research 19, 287–295 [Google Scholar]

12) Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H. and Zhang, T. (2007) Observations: Changes in snow, ice and frozen ground. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC (eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.). Cambridge University Press, Cambridge, pp. 337–383. [Google Scholar]

13) Church J.A., White N.J. (2006) A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33, L10602 doi:10.1029/2005GL024826 [Google Scholar]

14) Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D. and Woodworth, P.L. (2001) Changes in sea level. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A.). Cambridge University Press, Cambridge, pp. 639–693. [Google Scholar]

15) Rohling E.J., Grant K., Bolshaw M., Roberts A.P., Siddall M., Hemleben C., Kucera M. (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci. 2 (7), 500–504 doi:10.1038/ngeo557 [Google Scholar]

16) Church J.A., White N.J., Konikow L.F., Domingues C.M., Cogley J.G., Rignot E., Gregory J.M., van den Broeke M.R., Monaghan A.J., Velicogna I. (2011) Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 doi:10.1029/2011GL048794 [Google Scholar]

17) Ishii M., Kimoto M. (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 [Google Scholar]

18) Levitus S., Antonov J.I., Boyer T.P., Baranova K., Garcia H.E., Locarnini R.A., Mishonov A.V., Reagan J.R., Seidov D., Yarosh E.S., Zweng M.M. (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 doi:10.1029/2012GL051106 [Google Scholar]

19) World Glacier Monitoring Service (2013) World Glacier Inventory, http://www.gtn-g.org/data_overview.html

20) Svendsen P.L., Andersen O.B., Nielsen A.A. (2013) Acceleration of the greenland ice sheet mass loss as observed by GRACE: Confidence and sensitivity. Earth and Planetary Letters 364, 24–29 [Google Scholar]

21) Stocker, T., Dahe, Q., Plattner, G.-K., Tignor, M., Allen, S. and Midgley, P. (2010) IPCC Workshop Report. Workshop on Sea Level Rise and Ice Sheet Instabilities, the IPCC Working Group I Technical Support Unit, University of Bern, Switzerland. [Google Scholar]

22) Gornitz, V. (2001) Impoundment, groundwater mining, and other hydrological transformations: Impacts on global sea level rise. In Sea Level Rise: History and Consequences (eds. Douglas, B.C., Kearney, M.S. and Leatherman, S.P.). Academic Press, San Diego, pp. 97–119. [Google Scholar]

23) Pokhrel Y.N., Hanasaki N., Yeh P.J.-F., Yamada T.J., Kanae S., Oki T. (2012) Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci., doi:10.1038/Ngeo1476 [Google Scholar]

24) Lombard A., Garric G., Penduff T., Molines J.M. (2009) Regional patterns of observed sea level change – insights from a 1/4° global ocean/sea-ice hindcast. Ocean Dyn. 59, 433–449 doi:10.1007/s10236-009-0161-6 [Google Scholar]

25) NOAA (2013) Sea Levels Online. http://tidesandcurrents.noaa.gov/sltrends/sltrends.html

26) Peltier W.R. (2009) Closure of the budget of global sea level rise over the GRACE era: The importance and magnitudes of the required corrections for global isostatic adjustment. Quat. Sci. Rev. 28, 1658–1674 [Google Scholar]

27) Geospatial Information Authority of Japan (2011) Crustal movement associated with the earthquake on March 11. http://www.gsi.go.jp/chibankansi/chikakukansi40005.html (in Japanese).

28) Japan Meteorological Agency, Global Environment and Marine Department (2012) Long-term trend of sea level around Japan. http://www.data.kishou.go.jp/kaiyou/shindan/a_1/sl_trend/sl_trend.html (in Japanese).

29) Hibino T. (2001) Sea level fluctuation in the north-western Pacific and characteristics of the sea-level change around Japan. Annual Journal of Coastal Engineering, JSCE 48, 446–450(in Japanese) [Google Scholar]

30) Noguchi K., Suwa Y., Gomi H., Matsufuji E. (2010) For the setting of the benchmark value of previous sea level rise along Japan coasts for the climate change adaptation. Journal of JSCE, Ser. B2 (Coastal Engineering) 66, 1256–1260(in Japanese) [Google Scholar]

31) IPCC (2000) Special Report on Emission Scenarios. A Special report of working group III of the intergovernmental panel on climate change (eds. Nakicenovic, N. and Swart, R.). Cambridge University Press, Cambridge. [Google Scholar]

32) IPCC (2007b) Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.). Cambridge University Press, Cambridge. [Google Scholar]

33) Rahmstorf S. (2007) A semi-empirical approach to projecting future sea level rise. Science 315, 368–370 [PubMed] [Google Scholar]

34) Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J.F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., Nakicenovic, N., O’Neill, B., Pichs, R., Riahi, K., Rose, S., Runci, P., Stouffer, R., van Vuuren, D., Weyant, J., Wilbanks, T., Ypersele, J.P. and Zurek, M. (2008) Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. IPCC, Geneva. [Google Scholar]

35) Church J.A., White N.J., Coleman R., Lambeck K., Mitrovica J.X. (2004) Estimates of the regional distribution of sea-level rise over the 1950 to 2000 period. J. Clim. 17 (13), 2609–2625 [Google Scholar]

36) Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z.-C. (2007) Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.). Cambridge University Press, Cambridge, pp. 747–845. [Google Scholar]

37) Robinson A., Calov R., Ganopolski A. (2012) Multistability and critical thresholds of the Greenland ice sheet. Nature Climate Change, 1–4, Published Online, doi:10.1038/NCLIMATE1449 [Google Scholar]

38) Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignotto, J.O., Hay, J.E., McLean, R.F., Ragoonaden, S. and Woodroffe, C.D. (2007) Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E.). Cambridge University Press, Cambridge, pp. 315–356. [Google Scholar]

39) Nicholls R.J., Hoozemans F.M.J., Marchand M. (1999) Increasing flood risk and wetland losses due to global sea level rise: regional and global analyses. Glob. Environ. Change 9, S69–S87 [Google Scholar]

40) Nicholls R.J., Cazenave A. (2010) Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 [PubMed] [Google Scholar]

41) Maruyama Y., Mimura N. (2010) Global assessment of climate change impacts on coastal zones with combined effects of population and economic growth. Selected Papers of Environmental Systems Research, JSCE 38, 255–263(in Japanese) [Google Scholar]

42) Suzuki T. (2009) Estimation of inundation damage caused by global warming in three major bays and western parts of Japan. Global Environment, Association of International Research Initiatives for Environmental Studies14 (2), 231–236(in Japanese) [Google Scholar]

43) Oouchi K., Yoshimura J., Yoshimura H., Mizuta R., Kusunoki S., Noda A. (2006) Tropical cyclone climatology in a global warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J. Meteorol. Soc. Jpn. 84, 259–276 doi:10.2151/JMSJ.84.259 [Google Scholar]

44) Kitoh A., Ose T., Kurihara K., Kusunoki S., Sugi M., KAKUSHIN Team-3 Modeling Group (2009) Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: Results of preliminary experiments. Hydrological Research Letters 3, 49–53 doi:10.3178/HRL.3.49 [Google Scholar]

45) Hashimoto N., Kawai H., Matsuura K. (2005) Analysis of Typhoon Characteristics in the Future under Global Warming with the Use of RCM20 Data and Stochastic Typhoon Model. Annual Journal of Coastal Engineering, JSCE 52, 1221–1225(in Japanese) [Google Scholar]

46) Yasuda T., Ando K., Mori N., Mase H. (2009) Prediction and Stochastic Modeling of Future Typhoon Characteristics based on AGCM Projections under a Global Warming Scenario. Journal of JSCE, Ser. B2 (Coastal Engineering) 65, 1281–1285(in Japanese) [Google Scholar]

47) Yasuda Y., Nakajo S., Kim S.Y., Mori N., Mase H., Horsburgh K. (2011) Evaluation of Storm Surge Risk Directly Based on Climate Change Projection. Journal of JSCE, Ser. B2 (Coastal Engineering) 67, 1171–1175(in Japanese) [Google Scholar]

48) Mimura N., Inoue K., Kiyohashi M., Izumiya T., Nobuoka H. (1994) Assessment of sea-level rise impact on sandy beaches (2)—Verification of predictive model and national assessment. Proceedings of Coastal Engineering, JSCE 41, 1161–1165(in Japanese) [Google Scholar]

49) Mimura, N. and Nobuoka, H. (1996) Verification of the Bruun Rule for the estimation of shoreline retreat caused by sea-level rise, Coastal Dynamics 95, ASCE, 607–616. [Google Scholar]

50) Sugawa T., Udo K., Mimura N., Mano A. (2011) Projection of shoreline retreat due to sea-level rise along Japanese coasts. Journal of JSCE, Ser. B2 (Coastal Engineering) 67, 1196–1200(in Japanese) [Google Scholar]

51) SCOR (1991) The response of beaches to sea-level changes; a review of predictive models. J. Coastal Research 7, 895–921 [Google Scholar]

52) McLean, R.F., Tsyban, A., Burkett, V., Codignotto, J.O., Forbes, D.L., Mimura, N., Beamish, R.J. and Ittekkot, V. (2001) Coastal Zones and Marine Ecosystems. In Climate Change 2001: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the IPCC (eds. McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J. and White, K.S.). Cambridge University Press, Cambridge, pp. 343–379. [Google Scholar]

53) Minar M.H., Hossain M.B., Shamsuddin M.D. (2013) Climate change and coastal zone of Bangladesh: vulnerability, resilience and adaptability. Middle-East Journal of Scientific Research 13 (1), 114–120 [Google Scholar]

54) World Bank (2000) Cities, Seas and Storms: Managing Change in Pacific Island Economies. Vol. IV: Adapting to Climate Change. [Google Scholar]

55) Yasuhara K., Komine H., Murakami S., Chen G., Mitani Y. (2010) Effects of climate change on geo-disasters in coastal zones. Journal of Global Environmental Engineering, JSCE 15, 15–23 [Google Scholar]

56) Komine H., Duc D.M. (2011) Geotechnical and geoenvironmental engineering measures to adapt and mitigate global warming impacts. VNU Journal of Science, Earth Sciences 27 (No. 1S), 104–113 [Google Scholar]

57) Isobe M. (2013) Impact of global warming on coastal structures in shallow water. Ocean Engineering in press [Google Scholar]

58) IPCC CZMS (1990) Strategies for Adaptation to Sea-level rise. Report of the Coastal Zone Management Subgroup, In Climate Change, The IPCC Response Strategies (Response Strategies Working Group of the Intergovernmental Panel on Climate Change). Island Press, Washington, D.C., pp. 128–159. [Google Scholar]

59) Klein, R.J.T. and Tol, R.S.J. (1997) Adaptation to Climate Change: Options and Technologies—An Overview Paper. Technical Paper FCCC/TP/1997/3. UNFCC Secretariat.

60) Cooper N., Barber P.C., Bray M.C., Carter D.J. (2002) Shoreline management plans: a national review and an engineering perspective. Proc. Inst. Civil Eng. Water Maritime Engineering 154, 221–228 [Google Scholar]

61) DEFRA (2001) Shoreline Management Plans: A Guide for Coastal Defence Authorities. Department for Environment, Food and Rural Affairs (DEFRA), London. [Google Scholar]


Page 2

Contributions of components to the budget of global mean sea-level rise (unit: mm/year)

Period1972–2008 (Church et al., 2011)16)1993–2008 (Church et al., 2011)16)1993–2007 (Cazenave & Llovel, 2010)5)2003–2007 (Cazenave & Llovel, 2010)5)
Thermal expansion0.80 ± 0.150.88 ± 0.331.0 ± 0.30.25 ± 0.8
Glaciers & ice caps0.67 ± 0.030.99 ± 0.041.1 ± 0.251.4 ± 0.25
Greenland0.12 ± 0.170.31 ± 0.170.4 ± 0.150.5 ± 0.15
Antarctica0.30 ± 0.200.43 ± 0.200.3 ± 0.150.5 ± 0.15
Terrestrial storage−0.11 ± 0.19−0.08 ± 0.19−0.2 ± 0.1
Sum of estimated components1.78 ± 0.362.54 ± 0.462.85 ± 0.352.45 ± 0.85
Observation2.10 ± 0.163.22 ± 0.413.3 ± 0.42.5 ± 0.4
Difference (Observed–estimated)0.32 ± 0.390.69 ± 0.620.45−0.05