How have insects become resistant to insecticides over time

The evolution of insecticide resistance in the peach potato aphid, Myzus persicae.

Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS. Bass C, et al. Insect Biochem Mol Biol. 2014 Aug;51:41-51. doi: 10.1016/j.ibmb.2014.05.003. Epub 2014 May 20. Insect Biochem Mol Biol. 2014. PMID: 24855024 Review.

  1. Georghiou GP. The evolution of resistance to pesticides. Annu Rev Ecol Syst. 1972;3:133–68.

    CAS  Article  Google Scholar 

  2. Lee CY. Insecticide resistance and its underlying mechanisms in the German cockroach, Blattella germanica (Linn.) (Dictyoptera: Blattellidae). J Biosci. 1997;8:156–72.

    CAS  Google Scholar 

  3. Hemingway J, Field L, Vontas J. An overview of insecticide resistance. Science. 2002;298:96–7.

    CAS  PubMed  Article  Google Scholar 

  4. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. Molecular basis of insecticide resistance in mosquitoes. Insect Biochem Molec. 2004;34:653–65.

    CAS  Article  Google Scholar 

  5. Liu N, Zhu F, Xu Q, Pridgeon JW, Gao X. Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance. Acta Entomol Sin. 2006;49:671–9.

    CAS  Google Scholar 

  6. Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60:537–59.

    CAS  PubMed  Article  Google Scholar 

  7. Li X, Shuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007;52:231–53.

    PubMed  Article  CAS  Google Scholar 

  8. Usinger RL. Monograph of Cimicidae (Hemiptera-Heteroptera), Thomas Say Foundation, vol. 7. College Park: Entomological Society of America; 1966.

    Google Scholar 

  9. Potter MF. The history of bed bug management - with lessons from the past. Am Entomol. 2011;57:14–25.

    Article  Google Scholar 

  10. Koganemaru R, Miller DM. The bed bug problem: past, present, and future control methods. Pestic Biochem Physiol. 2013;106:177–89.

    CAS  Article  Google Scholar 

  11. Suwannayod S, Changbang Y, Buranapanichpan S. The life cycle and effectiveness of insecticides against the bed bugs of Thailand. Southeast Asian J Trop Med Public Health. 2010;41:548–54.

    PubMed  Google Scholar 

  12. Tawatsin A, Thavara U, Chompoosri J, Phusup Y, Jonjang N, Khumsawads C. Insecticide resistance in bedbugs in Thailand and laboratory evaluation of insecticides for the control of Cimex hemipterus and Cimex lectularius (Hemiptera: Cimicidae). J Med Entomol. 2011;48:1023–30.

    CAS  PubMed  Article  Google Scholar 

  13. Newberry K, Jansen EJ, Thibaud GR. The occurrence of the bedbugs Cimex hemipterus and Cimex lectularius in northern Natal and Kwazulu, South Africa. Trans R Soc Trop Med Hyg. 1987;81:431–3.

    CAS  PubMed  Article  Google Scholar 

  14. Gbakima AA, Terry BC, Kanja F, Kortequee S, Dukuley I, Sahr F. High prevalence of bedbugs Cimex hemipterus and Cimex lectularius in camps for internally displaced persons in Freetown, Sierra Leone: a pilot humanitarian investigation. West Afr J Med. 2002;21:268–71.

    CAS  PubMed  Google Scholar 

  15. Doggett SL, Russell RC. The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia: experiences from down under. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 407–25.

    Google Scholar 

  16. Dang K, Lilly DG, Bu W, Doggett SL. Simple, rapid and cost-effective technique for the detection of pyrethroid resistance in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Austral Entomol. 2015;54:191–6.

    Article  Google Scholar 

  17. Dang K, Toi CS, Lilly DG, Lee CY, Naylor R, Tawatsin A, et al. Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae). Pest Manag Sci. 2015;71:1015–20.

  18. Campbell BE, Koehler PG, Buss LJ, Baldwin RW. Recent documentation of the tropical bed bug (Hemiptera: Cimicidae) in Florida since the common bed bug resurgence. Fla Entomol. 2016;99:549–51.

    Article  Google Scholar 

  19. Birchard K. Bed bugs biting in Britain: only rarely used pesticides effective. Med Post. 1998;34:55.

    Google Scholar 

  20. Potter MF, Haynes KF, Connelly K, Deutsch M, Hardebeck E, Partin D, et al. The sensitivity spectrum: human reactions to bed bug bites. Pest Control Technol. 2010;38:70–4.

    Google Scholar 

  21. Doggett SL, Dwyer DE, Peñas PF, Russell RC. Bed bugs: clinical relevance and control options. Clin Microbiol Rev. 2012;25:164–92.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Minocha R, Wang C, Dang K, Webb C, Fernández-Peñas P, Doggett SL. Systemic erythrodermic reactions following repeated exposure to bites from the common bed bug Cimex lectularius (Hemiptera: Cimicidae). Austral Entomol. 2016; doi:10.1111/aen.12250.

  23. Rahim AHAR, Zahran Z, Majid AHA. Human skin reactions towards bites of tropical bed bug, Cimex hemipterus F. [sic] (Hemiptera: Cimicidae): a preliminary case study. Asian Pac J Trop Dis. 2016;6:366–71.

    Article  Google Scholar 

  24. Goddard J, DeShazo R. Bed bugs (Cimex lectularius) and clinical consequences of their bites. JAMA. 2009;301:1358–66.

    CAS  PubMed  Article  Google Scholar 

  25. Reinhardt K, Kempke D, Naylor RA, Siva-Jothy MT. Sensitivity to bites by the bed bug, Cimex lectularius. Med Vet Entomol. 2009;23:163–6.

    CAS  PubMed  Article  Google Scholar 

  26. Leulmi H, Bitam I, Berenger JM, Lepidi H, Rolain JM, Almeras L, et al. Competence of Cimex lectularius bed bugs for the transmission of Bartonella quintana, the agent of trench fever. PLoS Negl Trop Dis. 2015;9:e0003789.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Sentana-LIedo D, Barbu CM, Ngo MN, Wu Y, Sethuraman K, Levy MZ. Seasons, searches, and intentions: what the internet can tell us about the bed bug (Hemiptera: Cimicidae) epidemic. J Med Entomol. 2016;53:116–21.

    Article  Google Scholar 

  28. Davies TGE, Field LM, Williamson MS. The re-emergence of the bed bug as a nuisance pest: implications of resistance to the pyrethroid insecticides. Med Vet Entomol. 2012;26:241–54.

    CAS  PubMed  Article  Google Scholar 

  29. Bandyopadhyay T, Kumar A, Saili A. Bed bug outbreak in a neonatal unit. Epidemiol Infect. 2015;143:2865–70.

    CAS  PubMed  Article  Google Scholar 

  30. Romero A, Potter MF, Potter DA, Haynes KF. Insecticide resistance in the bed bug: a factor in the pest’s sudden resurgence? J Med Entomol. 2007;44:175–8.

    PubMed  Google Scholar 

  31. IRAC: The IRAC register. http://www.irac-online.org. Accessed 12 June 2017.

  32. Zhu KY. Insecticide resistance. In: Capinera JL, editor. Encyclopedia of entomology. 2nd ed. New York: Springer; 2008. p. 1979–81.

    Google Scholar 

  33. WHO. Environmental health criteria for DDT and its derivatives. Geneva: World Health Organization; 1979.

    Google Scholar 

  34. Johnson MS, Hill AJ. Partial resistance of a strain of bed bugs to DDT residual. Med Newsl. 1948;12:26–8.

    Google Scholar 

  35. Busvine JR. Insecticide-resistance in bed-bugs. Bull World Health Organ. 1958;19:1041–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. WHO. Insecticide resistance and vector control. Thirteenth report of the WHO expert committee on insecticides. In: WHO Technical Report Series, vol. No. 265. Geneva: World Health Organization; 1963.

    Google Scholar 

  37. WHO. Insecticide resistance and vector control. Seventeenth report of the WHO expert committee on insecticides, WHO Technical Report Series, vol. No. 433. Geneva: World Health Organization; 1970.

    Google Scholar 

  38. WHO. Resistance of vectors and reservoirs of disease to pesticides. Twenty-second report of the WHO expert committee on insecticides, WHO Technical Report Series, vol. No. 585. Geneva: World Health Organization; 1976.

    Google Scholar 

  39. WHO. Vector resistance to Pesticides, Fifteenth report of the WHO Expert Committee on Vector Biology and control. Geneva: World Health Organization; 1992.

    Google Scholar 

  40. Brown AWA, Pal R. Insecticide resistance in Arthropods. 2nd ed. Geneva: World Health Organization; 1971.

    Google Scholar 

  41. Newberry K, Mchunu ZM. Changes in the relative frequency of occurrence of infestations of two sympatric species of bedbug in northern Natal and Kwazulu, South Africa. Trans R Soc Trop Med Hyg. 1989;83:262–4.

    CAS  PubMed  Article  Google Scholar 

  42. Newberry K, Mchunu ZM, Cebkhulu SQ. Bedbug reinfestation rates in rural Africa. Med Vet Entomol. 1991;5:503–5.

    CAS  PubMed  Article  Google Scholar 

  43. Axtell RC, Arends JJ. Ecology and management of arthropod pests of poultry. Annu Rev Entomol. 1990;35:101–26.

    CAS  PubMed  Article  Google Scholar 

  44. Steelman CD, Szalanski AL, Trout R, McKern JA, Solorzano C, Austin JW. Susceptibility of the bed bug Cimex lectularius L. (Heteroptera: Cimicidae) collected in poultry production facilities to selected insecticides. J Agr Urban Entomol. 2008;25:41–51.

    CAS  Article  Google Scholar 

  45. Elliott M, Janes NF. Synthetic pyrethroids - a new class of insecticide. Chem Soc Rev. 1978;7:473–505.

    CAS  Article  Google Scholar 

  46. Davies TGE, Field LM, Usherwood PNR, Williamson MS. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life. 2007;59:151–62.

    CAS  PubMed  Article  Google Scholar 

  47. Boase C, Small G, Naylor R. Interim report on insecticide susceptibility status of UK bedbugs. Professional Pest Controller; 2006. p. 6–7.

    Google Scholar 

  48. Moore DJ, Miller DM. Laboratory evaluations of insecticide product efficacy for control of Cimex lectularius. J Econ Entomol. 2006;99:2080–6.

    CAS  PubMed  Article  Google Scholar 

  49. Lilly DG, Doggett SL, Zalucki MP, Orton C, Russell RC. Bed bugs that bite back, confirmation of insecticide resistance in the common bed bug, Cimex lectularius. Prof Pest Manag. 2009;13:22–4.

    Google Scholar 

  50. Lilly DG, Doggett SL, Orton C, Russell RC. Bed bug product efficacy under the spotlight, part 1. Prof Pest Manag. 2009;13–14:19–20.

    Google Scholar 

  51. Lilly DG, Doggett SL, Orton C, Russell RC. Bed bug product efficacy under the spotlight, part 2. Prof Pest Manag. 2009;13–14(15):18.

    Google Scholar 

  52. Lilly DG, Zalucki MP, Orton C, Russell RC, Webb CE, Doggett SL. Confirmation of insecticide resistance in Cimex lectularius Linnaeus (Hemiptera: Cimicidae) in Australia. Austral Entomol. 2015;54:96–9.

    Article  Google Scholar 

  53. Kilpinen O, Kristensen M, Jensen KMV. Resistance differences between chlorpyrifos and synthetic pyrethroids in Cimex lectularius population from Denmark. Parasitol Res. 2011;109:1461–4.

    PubMed  Article  Google Scholar 

  54. Dang K, Toi CS, Lilly DG, Bu W, Doggett SL. Detection of knockdown resistance mutations in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), in Australia. Pest Manag Sci. 2015;71:914–22.

    CAS  PubMed  Article  Google Scholar 

  55. Myamba J, Maxwel CA, Asidi A, Curtis CF. Pyrethroid resistance in tropical bed bugs, Cimex hemipterus, associated with use of treated bednets. Med Vet Entomol. 2002;16:448–51.

    CAS  PubMed  Article  Google Scholar 

  56. Karunaratne SHPP, Damayanthi BT, Fareena MHJ, Imbuldeniya V, Hemingway J. Insecticide resistance in the tropical bedbug Cimex hemipterus. Pestic Biochem Physiol. 2007;88:102–7.

    CAS  Article  Google Scholar 

  57. Jeschke P, Nauen R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci. 2008;64:1084–98.

    CAS  PubMed  Article  Google Scholar 

  58. Jeschke P, Nauen R, Shindler M, Elbert A. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. 2010;59:2897–908.

    PubMed  Article  CAS  Google Scholar 

  59. Potter MF, Haynes KF, Gordon JR, Hardebeck E, Wickemeyer W. Dual-action bed bug killers. Pest Control Technol. 2012;40:62–8. 75–6

    Google Scholar 

  60. Gordon JR, Goodman MH, Potter MF, Haynes KF. Population variation in and selection for resistance to pyrethroid-neonicotinoid insecticides in the bed bug. Sci Rep. 2014;4:3836.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. Gordon JR, Potter MF, Haynes KF. Insecticide resistance in the bed bug comes with a cost. Sci Rep. 2015;5:10807.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Wang C, Singh N, Cooper R, Liu C, Buczkowski G. Evaluation of an insecticide dust band treatment method for controlling bed bugs. J Econ Entomol. 2013;106:347–52.

    CAS  PubMed  Article  Google Scholar 

  63. Wang C, Singh N, Cooper R. Field study of the comparative efficacy of three pyrethroid/neonicotinoid mixture products for the control of the common bed bug, Cimex lectularius. Insects. 2015;6:197–205.

    PubMed  PubMed Central  Article  Google Scholar 

  64. Romero A, Anderson TD. High levels of resistance in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), to neonicotinoid Insecticides. J Med Entomol. 2016;53:727-31.

  65. Romero A, Potter MF, Haynes KF. Evaluation of chlorfenapyr for control of the bed bug, Cimex lectularius L. Pest Manag Sci. 2010;66:1243–8.

    CAS  PubMed  Article  Google Scholar 

  66. Doggett SL, Orton CJ, Lilly DG, Russell RC. Bed bugs - a growing problem worldwide, Australian and international trends update and causes for concern, session 2A. Australian Environmental Pest Managers Association, NSW Conference 2011 Sydney, Australia. 2011. http://medent.usyd.edu.au/bedbug/papers/aepma_2011_doggett.pdf. Accessed 1 Mar 2017

    Google Scholar 

  67. Black BC, Hollingsworth RM, Ahammadsahib KI, Kukel CD, Donovan S. Insecticidal action and mitochondrial uncoupling activity of AC-303, 630 and related halogenated pyrroles. Pestic Biochem Physiol. 1994;50:115–28.

    CAS  Article  Google Scholar 

  68. Raghavendra K, Barik TK, Bhatt RM, Srivastava HC, Sreehari U, Dash AP. Evaluation of the pyrrole insecticide chlorfenapyr for the control of Culex quinquefasciatus Say. Acta Trop. 2011;118:50–5.

    CAS  PubMed  Article  Google Scholar 

  69. Potter MF, Haynes KF, Romero A, Hardebeck E, Wickenmeyer W. Is there a new bed bug answer? Pest Control Technol. 2008;36(116):118–24.

    Google Scholar 

  70. Wang C, Gibb T, Bennett GW. Evaluation of two least toxic integrated pest management programs for managing bed bugs (Heteroptera: Cimicidae) with discussion of a bed bug intercepting device. J Med Entomol. 2009;46:566–71.

    PubMed  Article  Google Scholar 

  71. Perumalsamy H, Chang KS, Park C, Ahn YJ. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and -resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi. J Agric Food Chem. 2010;58:10001–6.

    CAS  PubMed  Article  Google Scholar 

  72. Nicastro RL, Sato ME, Arthur V, Silva MZ. Chlorfenapyr resistance in the spider mite Tetranychus urticae: stability, cross-resistance and monitoring of resistance. Phytoparasitica. 2013;41:503–13.

    CAS  Article  Google Scholar 

  73. Jiang T, Wu S, Yang T, Zhu C, Gao C. Monitoring field populations of Plutella xylostella (Lepidoptera: Plutellidae) for resistance to eight insecticides in China. Fla Entomol. 2015;98:65–73.

    CAS  Article  Google Scholar 

  74. Silva TBM, Silva WM, Campos MR, Silva JE, Ribeiro LMS, Siqueira HAA. Susceptibility levels of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to minor classes of insecticides in Brazil. Crop Prot. 2016;79:80–6.

    CAS  Article  Google Scholar 

  75. Van Leeuwen T, Van Pottelberge S, Tirry L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manag Sci. 2006;62:425–33.

    PubMed  Article  CAS  Google Scholar 

  76. Moore DJ, Miller DM. Field evaluations of insecticide treatment regimens for control of the common bed bug, Cimex lectularius (L.) [sic]. Pest Manag Sci. 2009;65:332–8.

    CAS  PubMed  Article  Google Scholar 

  77. Feroz M. Biochemistry of malathion resistance in a strain of Cimex lectularius resistant to organophosphorus compounds. Bull World Hlth Org. 1971;45:795–804.

    CAS  Google Scholar 

  78. Radwan WA, Guneidy AM, Soliman AA. On the susceptibility of the bed bug, Cimex lectularius L. to insecticides. Bull Soc Entomol Egypt. 1972;56:235–43.

    Google Scholar 

  79. Lockwood JA, Sparks TC, Sory RN. Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behavior. Bull Entomol Soc Am. 1984;30:41–51.

    Google Scholar 

  80. Sparks T, Lockwood JA, Byford RL, Graves JB, Leonard BR. The role of behavior in insecticide resistance. Pestic Sci. 1989;26:383–99.

    CAS  Article  Google Scholar 

  81. Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R. Review of insecticide resistance and behavioural avoidance of vectors of human diseases in Thailand. Parasit Vectors. 2013;6:280.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Silverman J, Bieman DN. Glucose aversion in the German cockroach, Blattella germanica. J Insect Physiol. 1993;39:925–33.

    CAS  Article  Google Scholar 

  83. Silverman J, Ross MH. Behavioral resistance of field-collected German cockroaches (Blattodea: Blattellidae) to baits containing glucose. Environ Entomol. 1994;23:425–30.

    Article  Google Scholar 

  84. Ross MH. Evolution of behavioral resistance in German cockroach (Dictyoptera: Blattellidae) selected with a toxic bait. J Econ Entomol. 1997;90:1482–5.

    CAS  Article  Google Scholar 

  85. Wada-Katsumata A, Silverman J. Changes in taste neurons support the emergence of an adaptive behaviour in cockroaches. Science. 2013;340:972–5.

    CAS  PubMed  Article  Google Scholar 

  86. Gillies MT, Chir B. The problem of exophily in Anopheles gambiae. Bull World Hlth Organ. 1956;15:437–49.

    CAS  Google Scholar 

  87. Mbogo CNM, Baya NM, Ofulla AVO, Githure JI, Snow RW. The impact of permethrin-impregnated bednets on malaria vectors of the Kenyan coast. Med Vet Entomol. 1996;10:251–9.

    CAS  PubMed  Article  Google Scholar 

  88. Mathenge EM, Giming JE, Kolczak M, Ombok M, Irungu LW, Hawley WA. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J Med Entomol. 2001;38:531–6.

    CAS  PubMed  Article  Google Scholar 

  89. Romero A, Potter MF, Haynes KF. Behavioral responses of the bed bug to insecticide residues. J Med Entomol. 2009;46:51–7.

    PubMed  Article  Google Scholar 

  90. Zhu F, Gujar H, Gordon JR, Haynes KF, Potter MF, Palli SR. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci Rep. 2013;3:1456.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. Mamidala P, Jones SC, Mittapalli O. Metabolic resistance in bed bugs. Insects. 2011;2:36–48.

    PubMed  PubMed Central  Article  Google Scholar 

  92. Mamidala P, Wijeratne AJ, Wijeratne S, Kornacker K, Sudhamalla B, Rivera-Vega LJ, et al. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMC Genomics. 2012;13:6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Rosenfeld JA, Reeves D, Brugler MR, Narechania A, Simon S, Durrett R, et al. Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius. Nat Commun. 2016;7:10164.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Koganemaru R, Miller DM, Adelman ZN. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic Biochem Physiol. 2013;106:190–7.

    CAS  Article  Google Scholar 

  95. Lilly DG, Latham SL, Webb CE, Doggett SL. Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). PLoS One. 2016;11:e0153302.

    PubMed  PubMed Central  Article  Google Scholar 

  96. Karaağaç SU. Insecticide resistance. In: Perveen F, editor. Insecticides - advances in integrated pest management. Rijeka: InTech; 2012. p. 469–78.

    Google Scholar 

  97. Nkya TE, Akhouayri I, Poupardin R, Batengana B, Mosha F, Magesa S, et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar J. 2014;13:28.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Plapp FW, Hoyer RF. Insecticide resistance in the house fly: decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance. J Econ Entomol. 1968;61:1298–303.

    CAS  PubMed  Article  Google Scholar 

  99. Wen Z, Scott JG. Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly, Musca domestica. Pestic Sci. 1999;55:988–92.

  100. Scott JG, Georghiou GP. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pestic Sci. 1986;17:195–206.

    CAS  Article  Google Scholar 

  101. Valles SM, Dong K, Brenner RJ. Mechanisms responsible for cypermethrin resistance in a strain of German cockroach, Blattella germanica (L.). Pestic Biochem Physiol. 2000;66:195–205.

    CAS  Article  Google Scholar 

  102. Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014;8:e2948.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Lilly DG, Webb CE, Doggett SL. Evidence of tolerance to silica-based desiccant dusts in a pyrethroid-resistant strain of Cimex lectularius (Hemiptera: Cimicidae). Insects. 2016;7:74.

    PubMed Central  Article  Google Scholar 

  104. Bai X, Mamidala P, Rajarapu SP, Jones SC, Mittapalli O. Transcriptomics of the bed bug (Cimex lectularius). PLoS One. 2011;6:e16336.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Scott JG. Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. New York and London: Chapman and Hall; 1991. p. 39–57.

    Google Scholar 

  106. Scott JG. Cytochromes P450 and insecticide resistance. Insect Biochem Molec. 1999;29:757–77.

    CAS  Article  Google Scholar 

  107. Agosin M, Perry AS. Microsomal mixed-function oxidases. In: Rockstein M, editor. Physiology of Insecta. New York: Academic Press; 1974. p. 539–96.

    Google Scholar 

  108. Hodgson E. The significance of cytochrome P-450 in insects. Insect Biochem. 1983;13:237–46.

    CAS  Article  Google Scholar 

  109. Berge JB, Feyereisen R, Amichot M. Cytochromes P450 monooxygenases and insecticide resistance in insects. Philos Trans R Soc B Biol Sci. 1998;353:1701–5.

    CAS  Article  Google Scholar 

  110. Feyereisen R. Insect cytochrome P450. In: Gilbert LI, Iatrou K, Gill SS, editors. Comprehensive molecular insect science, vol. 4. Oxford: Elsevier; 2005. p. 1–77.

    Google Scholar 

  111. Nelson DR. The cytochrome p450 homepage. Hum Genomics. 2009;4:59–65. http://drnelson.uthsc.edu/CytochromeP450.html. Accessed 1 Mar 2017

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu N. Pyrethroid resistance in insects: genes, mechanisms, and regulation. In: Perveen F, editor. Insecticides - advances in integrated pest management. Rijeka: InTech; 2012. p. 457–68.

    Google Scholar 

  113. Adelman ZN, Kilcullen KA, Koganemaru R, Anderson MAE, Anderson TD, Miller DM. Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population. PLoS One. 2011;6:e26228.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Okey AB. Enzyme induction in the cytochrome P450 system. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press; 1992. p. 549–608.

    Google Scholar 

  115. Brattsten LB, Wilkinson CF. Induction of microsomal enzymes in the southern armyworm (Prodenia eridania). Pestic Biochem Physiol. 1973;3:393–407.

    CAS  Article  Google Scholar 

  116. Zhu F, Li T, Zhang L, Liu N. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin-resistant house flies, Musca domestica. BMC Physiol. 2008;8:18.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. Markussen MDK, Kristensen M. Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the house fly Musca domestica L. Pestic Biochem Physiol. 2010;98:50–8.

    CAS  Article  Google Scholar 

  118. Liu N, Li T, Reid WR, Yang T, Zhang L. Multiple cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One. 2011;6:e23403.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Potter MF, Haynes KF, Fredericks J. Bed bugs across America. Pestworld; 2015. p. 4–14.

    Google Scholar 

  120. Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol. 2015;121:78–87.

    CAS  PubMed  Article  Google Scholar 

  121. Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJP. NADPH-cytochrome P450 oxidoreductase - Structural basis for hydride and electron transfer. J Biol Chem. 2001;276:29163–70.

    CAS  PubMed  Article  Google Scholar 

  122. Zhu F, Sams S, Moural T, Haynes KF, Potter MF, Palli SR. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS One. 2012;7(2):e31037.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Hanukoglu I. Electron transfer proteins of cytochrome P450 systems. Adv Mol Cell Biol. 1996;14:29–56.

    CAS  Article  Google Scholar 

  124. Feyereisen R. Insect P450 enzymes. Annu Rev Entomol. 1999;44:407–33.

    Article  Google Scholar 

  125. Scott JG. Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. New York and London: Chapman and Hall; 1990. p. 39–57.

    Chapter  Google Scholar 

  126. Hodgson E, Levi PE. Interactions of piperonyl butoxide with cytochrome P450. In: Jones DG, editor. Piperonyl butoxide: the insecticide synergist. London: Academic Press; 1998. p. 41–53.

    Google Scholar 

  127. Lilly DG, Dang K, Webb CE, Doggett SL. Evidence for metabolic pyrethroid resistance in the common bed bug (Hemiptera: Cimicidae). J Econ Entomol. 2016;109:1364–68.

    Article  Google Scholar 

  128. Romero A, Potter MF, Haynes KF. Evaluation of piperonyl butoxide as a deltamethrin synergist for pyrethroid-resistant bed bugs. J Econ Entomol. 2009;102:2310–5.

    CAS  PubMed  Article  Google Scholar 

  129. How YF, Lee CY. Surface contact toxicity and synergism of several insecticides against different stages of the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae). Pest Manag Sci. 2011;67:734–40.

    CAS  PubMed  Article  Google Scholar 

  130. Achaleke J, Martin T, Ghogomu RT, Vaissayre M, Brevault T. Esterase-mediated resistance to pyrethroids in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Central Africa. Pest Manag Sci. 2009;65:1147–54.

    CAS  PubMed  Article  Google Scholar 

  131. Hotelier T, Nègre V, Marchot P, Chatonnet A. Insecticide resistance through mutations in cholinesterases or carboxylesterases: data mining in the ESTHER database. J Pestic Sci. 2010;35:315–20.

    Article  Google Scholar 

  132. Bass C, Field LM. Gene amplification and insecticide resistance. Pest Manag Sci. 2011;67:886–90.

    CAS  PubMed  Article  Google Scholar 

  133. Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol. 2014;51:41–51.

    CAS  PubMed  Article  Google Scholar 

  134. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families databases. Nucleic Acids Res. 2012;40:D290–301.

    CAS  PubMed  Article  Google Scholar 

  135. Montella IR, Schama R, Valle D. The classification of esterases: an important gene family involved in insecticide resistance - A review. Mem Inst Oswaldo Cruz. 2012;107:437–49.

    CAS  PubMed  Article  Google Scholar 

  136. Hardstone MC, Strycharz JP, Kim J, Park I, Yoon KS, Ahn YJ, et al. Development of multifunctional metabolic synergists to suppress the evolution of resistance against pyrethroids in insects that blood feed on humans. Pest Manag Sci. 2015;76:842–9.

    Article  CAS  Google Scholar 

  137. Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci U S A. 1997;94:7464–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Claudianos C, Russell RJ, Oakeshott JG. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol. 1999;29:675–86.

    CAS  PubMed  Article  Google Scholar 

  139. Soderlund DM, Bloomquist JR. Molecular mechanisms of insecticide resistance. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. New York and London: Chapman and Hall; 1991. p. 58–96.

    Google Scholar 

  140. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    CAS  PubMed  Google Scholar 

  141. Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8.

    CAS  PubMed  Article  Google Scholar 

  142. Clark AG, Shamaan NA. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pestic Biochem Physiol. 1984;22:249–61.

    CAS  Article  Google Scholar 

  143. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide in a major malaria vector. Genome Biol. 2014;15:R27.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009;10:218–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Labbe R, Caveney S, Donly C. Genetic analysis of the xenobiotic resistance associated ABC gene subfamilies of the Lepidoptera. Insect Mol Biol. 2011;20:243–56.

    CAS  PubMed  Article  Google Scholar 

  146. Dermauw W, Leeuwen TV. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol. 2014;45:89–110.

    CAS  PubMed  Article  Google Scholar 

  147. Heong KL, Tan KH, Garcia CPF, Liu Z, Lu Z. Research methods in toxicology and insecticide resistance monitoring of rice planthoppers. 2nd ed. International Rice Research Institute: Los Banos; 2013.

    Google Scholar 

  148. Gorbel V, N’Guessan R. Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. In: Manguin S, editor. Anopheles mosquitoes - new insights into malaria vectors. Rijeka: InTech; 2013. doi:10.5772/56117.

    Google Scholar 

  149. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25.

    CAS  PubMed  Article  Google Scholar 

  150. Davies TGE, Williamson MS. Interactions of pyrethroids with the voltage-gated sodium channel. Bayer CropScience Journal. 2009;62:159–78.

    CAS  Google Scholar 

  151. Busvine JR. Mechanism of resistance to insecticide in houseflies. Nature. 1951;168:193–5.

    CAS  PubMed  Article  Google Scholar 

  152. Davies TGE, O’Reilly AO, Field LM, Wallace BA, Williamson MS. Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling. Pest Manag Sci. 2008;64:1126–30.

    CAS  PubMed  Article  Google Scholar 

  153. Loughney K, Kreber R, Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989;58:1143–54.

    CAS  PubMed  Article  Google Scholar 

  154. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996;252:51–60.

    CAS  PubMed  Article  Google Scholar 

  155. Vais H, Williamson MS, Goodson SJ, Devonshire AL, Warmke JW, Usherwood PN, et al. Activation of Drosophila sodium channels promotes modification by deltamethrin reductions in affinity caused by knock-down resistance mutations. J Gen Physiol. 2000;115:305–18.

  156. Yoon KS, Kwon DH, Strycharz JP, Hollingsworth CS, Lee SH, Clark JM. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J Med Entomol. 2008;45:1092–101.

    CAS  PubMed  Article  Google Scholar 

  157. Zhu F, Wigginton J, Romero A, Moore A, Ferguson K, Palli R, et al. Widespread distribution of knockdown resistance mutations in the bed bug, Cimex lectularius (Hemiptera: Cimicidae), populations in the United States. Arch Insect Biochem Physiol. 2010;73:245–57.

    CAS  PubMed  Google Scholar 

  158. Durand R, Cannet A, Berdjane Z, Bruel C, Haouchine D, Delaunay P, et al. Infestation by pyrethroids resistant bed bugs in the suburb of Paris, France. Parasite. 2012;19:381–7.

    CAS  PubMed  Article  Google Scholar 

  159. Vander Pan A, Kuhn C, Schmolz E, Klasen J, Krucken J, Samon-Himmelstjerna GV. Studies on pyrethroid resistance in Cimex lectularius (Hemiptera: Cimicidae), in Berlin, Germany. In: Muller G, Pospischil R, Robinson WH, editors. Proceedings of the 8th International Conference on Urban Pests, Zurich, Switzerland, 20 to 23 July 2014. Pápai: OOK-Press; 2014. p. 89–95.

    Google Scholar 

  160. Palenchar DJ, Gellatly KJ, Yoon KS, Mumcuoglu KY, Shalom U, Clark JM. Quantitative sequencing for the determination of kdr-type resistance allele (V419L, L925I, I936F) frequencies in common bed bug (Hemiptera: Cimicidae) populations collected from Israel. J Med Entomol. 2015;52:1018–27.

    PubMed  Article  Google Scholar 

  161. Usherwood PNR, Davies TGE, Mellor IR, O’Reilly AO, Peng F, Vais H, et al. Mutations in DII5 and the DIIS4–S5 linker of Drosophila melanogaster sodium channel define binding domains for pyrethroids and DDT. FEBS Lett. 2007;581:5485–92.

    CAS  PubMed  Article  Google Scholar 

  162. Seong KM, Lee DY, Yoon KS, Kwon DH, Kim HC, Klein TA, et al. Establishment of quantitative sequencing and filter contact vial bioassay for monitoring pyrethroid resistance in the common bed bug, Cimex lectularius. J Med Entomol. 2010;47:592–9.

    CAS  PubMed  Article  Google Scholar 

  163. Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni VZ, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.

    CAS  PubMed  Article  Google Scholar 

  164. Schapira A. DDT: a polluted debate in malaria control. Lancet. 2006;368:2111–3.

    PubMed  Article  Google Scholar 

  165. Fournier D, Bride JM, Hoffmann F, Karch F. Acetylcholinesterase, two types of modification confer resistance to insecticides. J Biol Chem. 1992;267:14270–4.

    CAS  PubMed  Google Scholar 

  166. Corbett JR. The biochemical mode of action of pesticides. London: Academic Press; 1974.

    Google Scholar 

  167. Hemingway J, Georghiou GP. Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides. Pestic Biochem Physiol. 1983;19:167–71.

    CAS  Article  Google Scholar 

  168. Seong KM, Kim YH, Kwon DH, Lee SH. Identification and characterization of three cholinesterases from the common bed bug, Cimex lectularius. Insect Mol Biol. 2012;21:149–59.

    CAS  PubMed  Article  Google Scholar 

  169. Hall JC, Kankel DR. Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics. 1976;83:517–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact. 2005;157–1588:257–61.

    Article  CAS  Google Scholar 

  171. Mutero A, Pralavorio M, Bride JM, Fournier D. Resistance-associated point mutations in insecticide-insensitive actylcholinesterase. Proc Natl Acad Sci U S A. 1994;91:5922–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. Fournier D, Mutero A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1994;108:19–31.

    Article  Google Scholar 

  173. Russell RJ, Claudianos C, Campbell PM, Horne I, Sutherland TD, Oakeshotta JG. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pestic Biochem Physiol. 2004;79:84–93.

    CAS  Article  Google Scholar 

  174. Hwang CE, Kim YH, Kwon DH, Seong KM, Choi JY, Je YH, et al. Biochemical and toxicological properties of two acetylcholinesterases from the common bed bug, Cimex lectularius. Pestic Biochem Physiol. 2014;110:20–6.

  175. Cole LM, Nicholson RA, Casida J. Action of phenylpyrazole insecticides at the GABA-Gated chloride channel. Pestic Biochem Physiol. 1993;46:47–54.

    CAS  Article  Google Scholar 

  176. Bloomquist JR. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Arch Insect Biochem Physiol. 1994;26:69–79.

    CAS  PubMed  Article  Google Scholar 

  177. Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB. Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol. 2005;68:942–51.

    CAS  PubMed  Article  Google Scholar 

  178. Ang LH, Nazni WA, Kuah MK, Shu-Chien AC, Lee CY. Detection of the A302S Rdl Mutation in fipronil bait-selected strains of the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol. 2013;106:2167–76.

    CAS  PubMed  Article  Google Scholar 

  179. Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993;363:449–51.

    CAS  PubMed  Article  Google Scholar 

  180. Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, et al. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol. 2005;14:179–83.

    CAS  PubMed  Article  Google Scholar 

  181. Ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G. Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol. 2000;45:449–66.

    CAS  PubMed  Article  Google Scholar 

  182. Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC. Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol. 2011;41:484–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. Bai D, Lummis SCR, Leicht W, Breer H, Satelle DB. Actions of imidacloprid and related nitromethylene on cholinergic receptors of an identified insect motor neuron. Pestic Sci. 1991;33:197–204.

    CAS  Article  Google Scholar 

  184. Crossthwaite A, Rendine S, Stenta M, Slater R. Target-site resistance to neonicotinoids. J Chem Biol. 2014;7:125–8.

    PubMed  PubMed Central  Article  Google Scholar 

  185. Koo HN, An JJ, Park SE, Kim JI, Kim GH. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Prot. 2014;55:91–7.

    CAS  Article  Google Scholar 

  186. Bass C, Puinean AM, Andrews MC, et al. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci. 2011;12:51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. Moya A, Peretó J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 2008;9:218–29.

    CAS  PubMed  Article  Google Scholar 

  188. Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A. 2009;107:769–74.

    PubMed  PubMed Central  Article  Google Scholar 

  189. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A. 2012;109:8618–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  190. Tago K, Kikuchi Y, Nakaoka S, Katsuyama C, Hayatsu M. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs. Mol Ecol. 2015;24:3766–78.

    CAS  PubMed  Article  Google Scholar 

  191. Singh BK. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol. 2009;7:156–64.

    CAS  PubMed  Article  Google Scholar 

  192. Broderick NA, Raffa KF, Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A. 2006;103:15196–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A. 2003;100:1803–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag Sci. 2009;65:939–42.

    CAS  PubMed  Article  Google Scholar 

  195. Hypsa V, Aksoy S. Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Heteroptera: Cimicidae). Insect Mol Biol. 1997;6:301–4.

    CAS  PubMed  Article  Google Scholar 

  196. Sakamoto JM, Rasgon JL. Endosymbiotic bacteria of bed bugs: evolution, ecology and genetics. Am Entomol. 2006;52:119–22.

    Article  Google Scholar 

  197. Benoit JB, Adelman ZN, Reinhardt K, et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat Commun. 2016;7:10165.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  198. Arkwright JA, Atkin EE, Bacot A. An hereditary Rickettsia-like parasite of the bed bug (Cimex lectularius). Parasitology. 1921;13:27–36.

    Article  Google Scholar 

  199. WHO. Manual on Practical Entomology in Malaria, part II, Methods and Techniques. Geneva: World Health Organization; 1975.

    Google Scholar 

  200. WHO. Instructions for determining the susceptibility or resistance of adult bedbugs to insecticides, WHO/VBC/81.809. 1981.

    Google Scholar 

  201. Barile J, Nauen R, Nentwig G, Pospischil R, Reid B. Laboratory and field evaluation of deltamethrin and bendiocarb to control Cimex lectularius (Heteroptera: Cimicidae). In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 105–11.

    Google Scholar 

  202. Fletcher MG, Axtell RC. Susceptibility of the bedbug, Cimex lectularius, to selected insecticides and various treated surfaces. Med Vet Entomol. 1993;7:69–72.

    CAS  PubMed  Article  Google Scholar 

  203. WHO. Techniques to detect insecticide resistance mechanisms (field and laboratory manual), WHO/CDS/CPC/MAL/98.6. 1998.

    Google Scholar 

  204. Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111.

  205. Boase C. Bedbugs - back from the brink. Pestic Outlook. 2001;12:159–62.

    Article  Google Scholar 

  206. Khan HR, Rahman MM. Morphology and biology of the bed bug, Cimex hemipterus (Hemiptera: Cimicidae) in the laboratory. Dhaka Univ J Biol Sci. 2012;21:125–30.

    Google Scholar 

  207. Wang L, Xu Y, Zeng L. Resurgence of bed bugs (Hemiptera: Cimicidae) in Mainland China. Fla Entomol. 2013;96:131–6.

    Article  Google Scholar 

  208. Wang L, Cai X, Xu Y. Status of urban bed bug infestations in Southern China: an analysis of pest control service records in Shenzhen in 2012 and Dongguan in 2013. J Med Entomol. 2015;52:76–80.

    PubMed  Article  Google Scholar 

  209. Miller D. Bed bugs (Hemiptera: Cimicidae). In: Capinera JL, editor. Encyclopedia of entomology. 2nd ed. New York: Springer; 2008. p. 405–17.

    Google Scholar 

  210. Haghi SFM, Behbodi M, Hajati H, Shafaroudi MM. Prevalence of bed bug (Cimex lectularius) in human settlement area of Bahnamir, Iran. Asian Pac J Trop Dis. 2014;4(Suppl 2):786–9.

    Article  Google Scholar 

  211. Mumcuoglu KY. A case of imported bed bug (Cimex lectularius) infestation in Israel. Isr Med Assoc J. 2008;10:388–9.

    PubMed  Google Scholar 

  212. Mumcuoglu KY, Shalom U. Questionnaire survey of common bedbug (Cimex lectularius) infestations in Israel. Isr J Entomol. 2010;40:1–10.

    Google Scholar 

  213. Hirao M. Recent resurgence of bedbug and its management. Med Entomol Zool. 2010;61:211–21.

    Article  Google Scholar 

  214. El-Azazy OME, AL-Behbehani B, Abdou NMI. Increasing bedbug, Cimex lectularius, infestations in Kuwait. J Egypt Soc Parasitol. 2013;43:415–8.

  215. How YF, Lee CY. Survey of bed bugs in infested premises in Malaysia and Singapore. J Vector Ecol. 2010;35:89–94.

    PubMed  Article  Google Scholar 

  216. Majid AHA, Zahran Z. Resurgence of tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae) infestation in Malaysia: control strategies and challenges faced by urban pest control operator (PCO). J Entomol Zool Stud. 2015;3:419–22.

    Google Scholar 

  217. Zulaikha Z, Hafiz AMA, Hafis ARA, Hassan AA. A survey on the infestation levels of tropical bed bugs in Peninsular Malaysia: current updates and status on resurgence of Cimex hemipterus (Hemiptera Cimicidae). Asian Pac J Trop Dis. 2016;6:40–5.

    Article  Google Scholar 

  218. Nisar M, Shah SMM, Khan I, Sheema, Sadiq A, Khan S, et al. Larvicidal, insecticidal, brine shrimp cytotoxicity and anti-oxidant activities of Diospyros kaki (L.) reported from Pakistan. Pak J Pharm Sci. 2015;28:1239–43.

  219. Lee IY, Ree H, An SJ, Linton JA, Yong TS. Reemergence of the bedbug Cimex lectularius in Seoul, Korea. Korean J Parasitol. 2008;46:269–71.

    PubMed  PubMed Central  Article  Google Scholar 

  220. Nanoudon S, Chanbang Y. Use of solid carbon dioxide for controlling bed bugs Cimex hemipterus (Fabricius) under laboratory conditions, Bangkok. Bangkok: Joint International Tropical Medicine Meeting; 2014. p. 55–61

    Google Scholar 

  221. Karunamoorthi K, Beyene B, Ambelu A. Prevalence, knowledge and self-reported containment practices about bedbugs in the resource-limited setting of Ethiopia: a descriptive cross-sectional survey. Health. 2015;7:1142–57.

    Article  Google Scholar 

  222. Omudu EA, Kuse CN. Bedbug infestation and its control practices in Gbajimba: a rural settlement in Benue state, Nigeria. J Vector Borne Dis. 2010;47:222–7.

    CAS  PubMed  Google Scholar 

  223. Emmanuel OI, Cyrian A, Agbo OE. A survey of bedbug (Cimex lectularius) infestation in some homes and hostels in Gboko, Benue State, Nigeria. Psyche. 2014:Article ID 762704, 5 pages. doi:10.1155/2014/762704.

  224. Angelakis E, Socolovschi C. Short report: Bartonella quintana in Cimex hemipterus, Rwanda. Am J Trop Med Hyg. 2013;89:986–7.

    PubMed  PubMed Central  Article  Google Scholar 

  225. Kweka EJ, Mwang'onde BJ, Kimaro EE, Msangi S, Tenu F, Mahande AM. Insecticides susceptibility status of the bedbugs (Cimex lectularius) in a rural area of Magugu, Northern Tanzania. J Global Infect Dis. 2009;1:102–6.

    Article  Google Scholar 

  226. Nalwanga E, Ssempebwa JC. Knowledge and practices of in-home pesticide use: a community survey in Uganda. J Environ Public Health. 2011;2011:230894.

    PubMed  PubMed Central  Article  Google Scholar 

  227. Faundez EI, Carvajal MA. Bed bugs are back and also arriving is the southernmost record of Cimex lectularius (Heteroptera: Cimicidae) in South America. J Med Entomol. 2014;51:1073–6.

    PubMed  Article  Google Scholar 

  228. Nascimento L. Investigation of occurrence of infestation by Cimicidae (Heteroptera: Cimicomorpha) in the metropolitan region of São Paulo, in the period 2004–2009 (Masters dissertation). São Paulo: Universidade de São Paulo; 2010. (In Portuguese)

    Google Scholar 

  229. Criado PR, Belda W, Criado RFJ, Silva RVE, Vasconcellos C. Bed bugs (Cimicidae infestation): the worldwide renaissance of an old partner of human kind. Braz J Infect Dis. 2011;15:74–80.

    PubMed  Google Scholar 

  230. Bernardes Filho F, Quaresma MV, Avelleira JCR, Azulay DR, Azulay-Abulafia L, Bastos AQ, et al. Bed bug dermatitis, description of two cases in Rio de Janeiro, Brazil. An Bras Dermatol. 2015;90:240–3.

  231. Myles T, Brown B, Bedard B, Bhooi R, Bruyere K, Chua AL, et al. Bed bugs in Toronto. University of Toronto, Centre for Urban and Community Studies Research Bulletin. 2003;19:1–4.

    Google Scholar 

  232. Hwang SW, Svoboda TJ, Jong IJD, Kabasele KJ, Gogosis E. Bed bug infestations in an urban environment. Emerg Infect Dis. 2005;11:533–8.

    PubMed  PubMed Central  Article  Google Scholar 

  233. Posso CE, Wolff MI, de Ulloa PC. The bed bugs Cimex lectularius: urban problem in the Andean region of Colombia. In: Robinson WH, Carvalho Campos AE, editors. Proceedings of the 7th International Conference on Urban Pests, Ouro Preto, Brazil, 7 to 10 July 2011, vol. 2011. São Paulo: Instituto Biológico. p. 371.

  234. Salazar R, Castillo-Neyra R, TustinAW B-MK, Náquira C, Levy MZ. Bed bugs (Cimex lectularius) as vectors of Trypanosoma cruzi. Am J Trop Med Hyg. 2015;92:331–5.

    PubMed  PubMed Central  Article  Google Scholar 

  235. Potter MF. The perfect storm: an extension view on bed bugs. Am Entomol. 2006;52:102–4.

    Article  Google Scholar 

  236. Alalawi AH. Bed bugs epidemic in the United States. Entomol Ornithol Herpetol. 2015;4:143.

    Google Scholar 

  237. Reyes-Lugo M, Rodríguez-Acosta A. Is the infestation by bedbug (Cimex lectularius Linnaeus, 1758) extinct in Venezuela? Rev Científ FCV-LUZ. 2002;12:182–5.

    Google Scholar 

  238. Sadílek D, Šťáhlavský F, Vilímová J, Zima J. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae): a survey across Europe. Comp Cytogenet. 2013;7:253–69.

    PubMed  PubMed Central  Article  Google Scholar 

  239. Kilpinen O, Jensen KMV, Kristensen M. Bed bug problems in Denmark, with a European perspective. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 395–9.

    Google Scholar 

  240. Levy Bencheton A, Berenger JM, Del Giudice P, Delaunay P, Pages F, Morand JJ. Resurgence of bedbugs in southern France: a local problem or the tip of the iceberg? J Eur Acad Dermatol Venereol. 2011;25:599–602.

    CAS  PubMed  Article  Google Scholar 

  241. Akhoundi M, Kengne P, Cannet A, Brengues C, Berenger J, Izri A, et al. Spatial genetic structure and restricted gene flow in bed bugs (Cimex lectularius) populations in France. Infect Genet Evol. 2015;34:236–43.

    PubMed  Article  Google Scholar 

  242. Seidel C, Reinhardt K. Bugging forecast: Unknown, disliked, occasionally intimate. Bed bugs in Germany meet unprepared people. PLoS One. 2013;8:e51083.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  243. Kuhn C, Vander PA. The worldwide expansion of bed bugs also constitutes a problem in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014;57:524–30.

    CAS  PubMed  Article  Google Scholar 

  244. Vander PA. Studies on the pyrethroid resistance in the bed bug, Cimex lectularius in Berlin, Germany (PhD Dissertation). Berlin: Free University Berlin; 2015.

    Google Scholar 

  245. Papp G, Madaczki L, Bajomi D. Occurrence of bed bug in Budapest, Hungary. In: Muller G, Pospischil R, Robinson WH, editors. Proceedings of the 8th International Conference on Urban Pests, Zurich, Switzerland, 20 to 23 July 2014. Pápai: OOK-Press; 2014. p. 81–8.

    Google Scholar 

  246. Masetti M, Bruschi F. Bedbug infestations recorded in Central Italy. Parasitol Int. 2007;56:81–3.

    PubMed  Article  Google Scholar 

  247. Giorda F, Guardone L, Mancini M, Accorsi A, Macchioni F, Mignone W. Cases of bed bug (Cimex lectularius) infestations in northwest Italy. Vet Ital. 2013;49:335–40.

    PubMed  Google Scholar 

  248. Roslavtseva SA. Bed bugs - the problem in Russia, In: Robinson WH, Carvalho Campos AE, editors. Proceedings of the 7th International Conference on Urban Pests, Ouro Preto, Brazil, 7 to 10 July 2011. São Paulo: Instituto Biológico; 2011. p. 372.

    Google Scholar 

  249. Roslavtseva SA, Alekseev MA, Polupanov DA. The problem of increasing the number of bed bugs in the world and their resistance to insecticides. Proceeding of the International Conference in Memoriam of Prof. Yuri S. Balashov, a Corresponding Member of the RAS: "Fundamental and Applied Aspects of the Study of Parasitic Arthropods in the XXI Century", St. Petersburg, Russia, 21 to 25 October, 2013. 2013. p. 135–137.

  250. Mueller G, Luescher IL, Schmidt M. Temporal changes in the incidence of household arthropod pests in Zurich, Switzerland. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 15–21.

    Google Scholar 

  251. Boase C. Bed bug (Hemiptera: Cimicidae): an evidence-based analysis of the current situation. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 8–14.

    Google Scholar 

  252. Doggett SL, Geary MJ, Crowe WJ, Wilson P, Russell RC. Has the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae), invaded Australia? Environ Health. 2003;3:80–2.

    Google Scholar 

  253. Doggett SL, Geary MJ, Russell RC. The resurgence of bed bugs in Australia, with notes on their ecology and control. Environ Health. 2004;4:30–8.

    Google Scholar 

  254. Norah L. Dealing with bed bugs when travelling. 2012. http://www.findingtheuniverse.com/2012/03/dealing-with-bed-bugs-as-traveller.html. Accessed 1 Mar 2017.

    Google Scholar 

  255. Livadas GA. Do anophelines acquire resistance to DDT? 1951. (unpublished working document WHO/Mal/74).

  256. Livadas GA, Georgopoulos G. Development of resistance to DDT by Anopheles sacharovi in Greece. Bull World Health Organ. 1953;8:497–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Hess AD. Current status of insecticide resistance in insects of public health importance. Am J Trop Med Hyg. 1953;2:311–8.

    CAS  PubMed  Article  Google Scholar 

  258. Simmons SW. Public health significance of insect resistance to insecticides and future orientation of vector control programmes. Document EUR/Insects/6 of WHO Symposium on the Control of Insect Vectors of Disease, October 26–31, Rome; 1953. p. 33.

    Google Scholar 

  259. Levinson HZ. The control of bed bugs (Cimex lectularius L.) with DDT and GBH in Israel. Riv Parassitol. 1953;14:233–4.

    Google Scholar 

  260. Gratz NG. A survey of bed-bug resistance to insecticides in Israel. Bull World Health Organ. 1959;20:835–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Floch H. Dédétérésistances. Archives de l’Institut Pasteur de la Guyane et du Territoire de l’Inini. 1956;365:152–3.

    Google Scholar 

  262. Mofidi C, Samimi B. Preliminary experiments on the susceptibility of Cimex lectularius to insecticides in Tehran. Institute of Parasitology and Malariology, Tehran. Mimeograph document. 1956; May: 5 pp.

  263. Cwilich R, Mer GG, Meron AV. Bedbugs resistant to gamma-BHC (Lindane) in Israel. Nature. 1957;179:636–7.

    CAS  PubMed  Article  Google Scholar 

  264. Busvine JR. Recent progress in the eradication of bed bugs. Sanitarian. 1957;65:365–9.

    Google Scholar 

  265. Quarterman KD, Schoof HF. The status of insecticide resistance in arthropods of public health importance in 1956. Am J Trop Med Hyg. 1958;7:74–83.

    CAS  PubMed  Article  Google Scholar 

  266. Lofgren CS, Keller JC, Burden GS. Resistance tests with bed bug and evaluation of insecticides for its control. J Econ Entomol. 1958;51:241–4.

    CAS  Article  Google Scholar 

  267. Brown AWA. Report on a visit to eastern European countries. World Health Organization. 1959;WHO/Insecticides/99. (Mimeographed document).

  268. Reid ET. Insecticide resistance. Cent Afr J Med. 1960;6:528–34.

    CAS  PubMed  Google Scholar 

  269. Sharma MID, Mohan BN, Singh NN. Further observations on the technique for quantitative estimation of susceptibility of bed-bugs to contact insecticides. Indian J Malariol. 1962;16:1–16.

    CAS  PubMed  Google Scholar 

  270. Whitehead GB. A study of insecticide resistance in a population of bed bugs, Cimex lectularius L., and a method of assessing effectiveness of control measures in houses. J Entomol Soc S Afr. 1962;25:121–7.

    Google Scholar 

  271. Sharma MID. Studies on the susceptibility of bed-bugs to DDT, Dieldrin and Diazinon in Gaza. World Health Organization. 1963;WHO/Vector Control/48.

  272. Radwan WA, Guneidy AM, Soliman AA. On the susceptibility of the bed bug, Cimex lectularius L. to insecticides. Bull Entomol Soc Egypt Econ Ser. 1972;6:73–7.

    Google Scholar 

  273. Ewers WH. Parasites of man in Papua-New Guinea. Southeast Asian J Trop Med Public Health. 1972;3:79–86.

    CAS  PubMed  Google Scholar 

  274. Chen HH, Tseng PT, Pletsch DJ. DDT resistant bedbugs (Cimex hemipterus Fabr.) found in an army camp in southern Taiwan, China. J Formos Med Assoc. 1956;55:143–8.

    CAS  Google Scholar 

  275. Rao TR, Halgari AV. A note on resistance of bed bugs to DDT in Bombay State. Indian J Malariol. 1956;10:149–54.

    CAS  PubMed  Google Scholar 

  276. Smith A. Dieldrin-resistance in Cimex hemipterus Fabricius in the Pare Area of North-East Tanganyika. Bull World Health Organ. 1958;19:1124–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Gratz NG. Insecticide resistance in bed-bugs and flies in Zanzibar. Bull World Health Organ. 1961;24:668–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Armstrong JA, Bransby-Williams WR, Huddleston JA. Resistance to dieldrin of Cimex hemipterus (Fabricius). Nature. 1962;193:499–501.

    CAS  PubMed  Article  Google Scholar 

  279. Bourke TV. Some aspects of insecticide application in malaria control programmes other than the effect on the insect vectors. Papua New Guinea Agric J. 1973;24:33–40.

    CAS  Google Scholar 

  280. Watanabe M. Insecticide susceptibility and effect of heat treatment on bedbug, Cimex lectularius. Med Entomol Zool. 2010;61:239–44.

    Article  Google Scholar 

  281. Polanco AM, Miller DN, Brewster CC. Survivorship during starvation for Cimex lectularius L. Insects. 2011;2:232–42.

    PubMed  PubMed Central  Article  Google Scholar 

  282. Polanco AM, Brewster CC, Miller DN. Population growth potential of the bed bug Cimex lectularius L.: a life table analysis. Insects. 2011;2:173–85.

    PubMed  PubMed Central  Article  Google Scholar 

  283. Anderson JF, Cowles RS. Suceptibility of Cimex lectularius (Hemiptera: Cimicidae) to pyrethroid insecticides and to insecticidal dusts with or without pyrethroid insecticides. J Econ Entomol. 2012;105:1789–95.

    CAS  PubMed  Article  Google Scholar 

  284. Tahir HM, Malik HT. Susceptibility of Cimex lectularius L. (Heteroptera: Cimicidae) to Deltamethin. Pak J Zool. 2014;46:288–90.

    Google Scholar 

  285. Campbell BE, Miller DM. Insecticide resistance in eggs and first instars of the bed bug, Cimex lectularius (Hemiptera: Cimicidae). Insects. 2015;6:122–32.

    PubMed  PubMed Central  Article  Google Scholar 

  286. Brogdon WG, Chan A. Guidelines for evaluating insecticide resistance in vectors using the CDC bottle bioassay. Ctr Dis Control Prev. 2010; https://www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_bioassay_en.pdf. Accessed 30 Jun 2016


Page 2

Year Characterization Targets Methods Accession numbera Resistance mechanisms Reference
C. lectularius
2009 Behavioral Bioassay: SC Behavioral resistance [89]
2009; 2015;2016 Bioassay P450s; esterases Bioassay (SC/T) plus synergists (e.g. PBO, PBH, EN16/5–1)   Metabolic resistance: P450s, esterases [127, 128, 136]
2008; 2011; 2016 Biochemical P450s; GSTs; esterases Biochemical assays Metabolic resistance: P450s, GSTs and esterases [64, 113, 156]
2016 Morphological Cuticle SEM Penetration resistance [95]
2008 Genetic VGSC Cloning and sequencing (RACE) FJ031996; FJ031997 Target site insensitivity: kdr [156]
2011 Genetic Transcriptome 454 pyrosequencing (Roche 454 GS FLX Titanium platform) SRA024509 Metabolic resistance: P450s [104]
2011 Genetic Transcriptome High-throughput sequencing (Roche 454 Titanium platform) SRA043735 Metabolic resistance: P450s, GSTs and esterases; Target site insensitivity: kdr [113]
2012 Genetic RNA-seq Illumina high-throughput sequencing (GAII platform) GSE31823 Metabolic resistance: P450s, GSTs, ABC-transporters, esterases; Penetration resistance; Target site insensitivity: kdr [92]
2012 Genetic ClCPR Cloning and sequencing (RACE) JQ178363 Metabolic resistance: P450s [122]
2012 Genetic ClAChE1; ClAChE2; ClSChE Cloning and sequencing (RACE) JN563927; GU597837;GU597838;GU597839 [168]
2013 Genetic CPRR Data from NCBI Penetration resistance [94]
2013 Genetic Transcriptome 454 pyrosequencing (Roche 454 GS FLX Titanium platform) Metabolic resistance: P450s, esterases, ABC-transporters; Penetration resistance; Target site insensitivity: kdr [90]
2016 Genetic Genome Illumina high-throughput sequencing (Illumina HiSeq2000s) SRS580017 Metabolic resistance: P450s, esterases, ABC-transporters, GSTs; Penetration resistance; Target site insensitivity: kdr [197]
2016 Genetic Genome; RNA-seq Illumina high-throughput sequencing SRS749263; SRR1790655 Target site insensitivity: kdr, putative GABA receptors; Metabolic resistance:P450s, GSTs, esterases [93]
C. hemipterus
2011 Bioassay P450s Bioassay (SC) plus PBO Metabolic resistance: P450s [129]
2007 Biochemical P450s; GSTs; Esterases Biochemical assays Metabolic resistance: GSTs, and esterases [56]
2015 Genetic VGSC(Part) Sanger sequencing Target site insensitivity: kdr [17]

  1. Abbreviations: EN16/5–1 6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-2, 3-dihydrobenzofuranby [127], PBH 3-Phenoxybenzyl hexanoate, a surrogate substrate for carboxylesterases and oxidases [136], SC surface contact, T topical application, SEM scanning electron microscope, ClCPR Cimex lectularius NADPH-cytochrome P450 reductase [122], CPRR cuticular protein with the rebers and riddiford consensus [94], ClAChE1, ClAChE2 two C. lectularius acetylcholinesterases, ClSChE C. lectularius salivary gland-specific cholinesterase-like protein [168], RACE rapid amplification of cDNA ends, ABC-transporters ATP-binding cassette (ABC) transporters
  2. aData from GenBank at NCBI (National Center for Biotechnology Information)