How are atoms of the same similar elements different from one another what do you call these atoms Brainly?

Home Science Chemistry

chemical element, also called element, any substance that cannot be decomposed into simpler substances by ordinary chemical processes. Elements are the fundamental materials of which all matter is composed.

This article considers the origin of the elements and their abundances throughout the universe. The geochemical distribution of these elementary substances in the Earth’s crust and interior is treated in some detail, as is their occurrence in the hydrosphere and atmosphere. The article also discusses the periodic law and the tabular arrangement of the elements based on it. For detailed information about the compounds of the elements, see chemical compound.

The Editors of Encyclopaedia Britannica

At present there are 118 known chemical elements. About 20 percent of them do not exist in nature (or are present only in trace amounts) and are known only because they have been synthetically prepared in the laboratory. Of the known elements, 11 (hydrogen, nitrogen, oxygen, fluorine, chlorine, and the six noble gases) are gases under ordinary conditions, two (bromine and mercury) are liquids (two more, cesium and gallium, melt at about or just above room temperature), and the rest are solids. Elements can combine with one another to form a wide variety of more complex substances called compounds. The number of possible compounds is almost infinite; perhaps a million are known, and more are being discovered every day. When two or more elements combine to form a compound, they lose their separate identities, and the product has characteristics quite different from those of the constituent elements. The gaseous elements hydrogen and oxygen, for example, with quite different properties, can combine to form the compound water, which has altogether different properties from either oxygen or hydrogen. Water clearly is not an element because it consists of, and actually can be decomposed chemically into, the two substances hydrogen and oxygen; these two substances, however, are elements because they cannot be decomposed into simpler substances by any known chemical process. Most samples of naturally occurring matter are physical mixtures of compounds. Seawater, for example, is a mixture of water and a large number of other compounds, the most common of which is sodium chloride, or table salt. Mixtures differ from compounds in that they can be separated into their component parts by physical processes; for example, the simple process of evaporation separates water from the other compounds in seawater.

The modern concept of an element is unambiguous, depending as it does on the use of chemical and physical processes as a means of discriminating elements from compounds and mixtures. The existence of fundamental substances from which all matter is made, however, has been the basis of much theoretical speculation since the dawn of history. The ancient Greek philosophers Thales, Anaximenes, and Heracleitus each suggested that all matter is composed of one essential principle—or element. Thales believed this element to be water; Anaximenes suggested air; and Heracleitus, fire. Another Greek philosopher, Empedocles, expressed a different belief—that all substances are composed of four elements: air, earth, fire, and water. Aristotle agreed and emphasized that these four elements are bearers of fundamental properties, dryness and heat being associated with fire, heat and moisture with air, moisture and cold with water, and cold and dryness with earth. In the thinking of these philosophers all other substances were supposed to be combinations of the four elements, and the properties of substances were thought to reflect their elemental compositions. Thus, Greek thought encompassed the idea that all matter could be understood in terms of elemental qualities; in this sense, the elements themselves were thought of as nonmaterial. The Greek concept of an element, which was accepted for nearly 2,000 years, contained only one aspect of the modern definition—namely, that elements have characteristic properties.

How are atoms of the same similar elements different from one another what do you call these atoms Brainly?

Put your science smarts under the microscope and see how much you know about bloodstones, biomes, buoyancy, and more!

In the latter part of the Middle Ages, as alchemists became more sophisticated in their knowledge of chemical processes, the Greek concepts of the composition of matter became less satisfactory. Additional elemental qualities were introduced to accommodate newly discovered chemical transformations. Thus, sulfur came to represent the quality of combustibility, mercury that of volatility or fluidity, and salt that of fixity in fire (or incombustibility). These three alchemical elements, or principles, also represented abstractions of properties reflecting the nature of matter, not physical substances.

The important difference between a mixture and a chemical compound eventually was understood, and in 1661 the English chemist Robert Boyle recognized the fundamental nature of a chemical element. He argued that the four Greek elements could not be the real chemical elements because they cannot combine to form other substances nor can they be extracted from other substances. Boyle stressed the physical nature of elements and related them to the compounds they formed in the modern operational way.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

In 1789 the French chemist Antoine-Laurent Lavoisier published what might be considered the first list of elemental substances based on Boyle’s definition. Lavoisier’s list of elements was established on the basis of a careful, quantitative study of decomposition and recombination reactions. Because he could not devise experiments to decompose certain substances, or to form them from known elements, Lavoisier included in his list of elements such substances as lime, alumina, and silica, which now are known to be very stable compounds. That Lavoisier still retained a measure of influence from the ancient Greek concept of the elements is indicated by his inclusion of light and heat (caloric) among the elements.

Seven substances recognized today as elements—gold, silver, copper, iron, lead, tin, and mercury—were known to the ancients because they occur in nature in relatively pure form. They are mentioned in the Bible and in an early Hindu medical treatise, the Caraka-samhita. Sixteen other elements were discovered in the second half of the 18th century, when methods of separating elements from their compounds became better understood. Eighty-two more followed after the introduction of quantitative analytical methods.

Home Science Chemistry

An isotope is one of two or more species of atoms of a chemical element with the same atomic number and position in the periodic table and nearly identical chemical behavior but with different atomic masses and physical properties. Every chemical element has one or more isotopes.

Differences in the properties of isotopes can be attributed to either of two causes: differences in mass or differences in nuclear structure. Scientists usually refer to the former as isotope effects and to the latter by a variety of more specialized names.

Isotopes are said to be stable if, when left alone, they show no perceptible tendency to change spontaneously. A uniform scale of nuclear stability that applies to both stable and unstable isotopes alike is based on comparing measured isotope masses with the masses of their constituent electrons, protons, and neutrons.

The existence of isotopes emerged from two independent lines of research, the first being the study of radioactivity. The unambiguous confirmation of isotopes in stable elements not associated directly with either uranium or thorium came with the development of the mass spectrograph.

See all videos for this article

isotope, one of two or more species of atoms of a chemical element with the same atomic number and position in the periodic table and nearly identical chemical behaviour but with different atomic masses and physical properties. Every chemical element has one or more isotopes.

An atom is first identified and labeled according to the number of protons in its nucleus. This atomic number is ordinarily given the symbol Z. The great importance of the atomic number derives from the observation that all atoms with the same atomic number have nearly, if not precisely, identical chemical properties. A large collection of atoms with the same atomic number constitutes a sample of an element. A bar of pure uranium, for instance, would consist entirely of atoms with atomic number 92. The periodic table of the elements assigns one place to every atomic number, and each of these places is labeled with the common name of the element, as, for example, calcium, radon, or uranium.

Not all the atoms of an element need have the same number of neutrons in their nuclei. In fact, it is precisely the variation in the number of neutrons in the nuclei of atoms that gives rise to isotopes. Hydrogen is a case in point. It has the atomic number 1. Three nuclei with one proton are known that contain 0, 1, and 2 neutrons, respectively. The three share the place in the periodic table assigned to atomic number 1 and hence are called isotopes (from the Greek isos, meaning “same,” and topos, signifying “place”) of hydrogen.

Many important properties of an isotope depend on its mass. The total number of neutrons and protons (symbol A), or mass number, of the nucleus gives approximately the mass measured on the so-called atomic-mass-unit (amu) scale. The numerical difference between the actual measured mass of an isotope and A is called either the mass excess or the mass defect (symbol Δ; see table).

Abundances of the isotopes
element Z symbol A abundance mass excess
Sources: G. Audi and A.H. Wapstra, "The 1995 Update to Atomic Mass Evaluation," Nuclear Physics, A595:409–480 (1995); K.J.R. Rosman and P.D.P. Taylor, "Isotopic Compositions of the Elements 1997," J. Phys. Chem. Ref. Data, 27:1275–85 (1995).
hydrogen 1 H 1 99.9885 7.289
2 0.0151 13.136
helium 2 He 3 0.000138 14.931
4 99.999863 2.425
lithium 3 Li 6 7.59 14.086
7 92.41 14.908
beryllium 4 Be 9 100 11.348
boron 5 B 10 19.9 12.051
11 80.1 8.668
carbon 6 C 12 98.93 0
13 1.07 3.125
nitrogen 7 N 14 99.632 2.863
15 0.368 0.101
oxygen 8 O 16 99.757 −4.737
17 0.038 −0.809
18 0.205 −0.782
fluorine 9 F 19 100 −1.487
neon 10 Ne 20 90.48 −7.042
21 0.27 −5.732
22 9.25 −8.024
sodium 11 Na 23 100 −9.529
magnesium 12 Mg 24 78.99 −13.933
25 10.00 −13.193
26 11.01 −16.214
aluminum 13 Al 27 100 −17.197
silicon 14 Si 28 92.2297 −21.493
29 4.6832 −21.895
30 3.0872 −24.433
phosphorus 15 P 31 100 −24.441
sulfur 16 S 32 94.93 −26.016
33 0.76 −26.586
34 4.29 −29.932
36 0.02 −30.664
chlorine 17 Cl 35 75.78 −29.014
37 24.22 −31.762
argon 18 Ar 36 0.3365 −30.230
38 0.0632 −34.715
40 99.6003 −35.040
potassium 19 K 39 93.2581 −33.807
40 0.0117 −33.535
41 6.7302 −35.559
calcium 20 Ca 40 96.941 −34.846
42 0.647 −38.547
43 0.135 −38.408
44 2.086 −41.469
46 0.004 −43.135
48 0.187 −44.215
scandium 21 Sc 45 100 −41.069
titanium 22 Ti 46 8.25 −44.125
47 7.44 −44.932
48 73.72 −48.487
49 5.41 −48.558
50 5.18 −51.426
vanadium 23 V 50 0.250 −49.218
51 99.750 −52.198
chromium 24 Cr 50 4.345 −50.254
52 83.789 −55.413
53 9.501 −55.281
54 2.365 −56.928
manganese 25 Mn 55 100 −57.706
iron 26 Fe 54 5.845 −56.248
56 91.754 −60.601
57 2.119 −60.176
58 0.282 −62.149
cobalt 27 Co 59 100 −62.224
nickel 28 Ni 58 68.0769 −60.223
60 26.2231 −64.468
61 1.1399 −64.217
62 3.6345 −66.743
64 0.9256 −67.096
copper 29 Cu 63 69.17 −65.576
65 30.83 −67.260
zinc 30 Zn 64 48.63 −66.000
66 27.90 −68.896
67 4.10 −67.877
68 18.75 −70.004
70 0.62 −69.559
gallium 31 Ga 69 60.108 −69.321
71 39.892 −70.137
germanium 32 Ge 70 20.84 −70.560
72 27.54 −72.586
73 7.73 −71.299
74 36.28 −73.422
76 7.61 −73.213
arsenic 33 As 75 100 −73.032
selenium 34 Se 74 0.89 −72.213
76 9.37 −75.252
77 7.63 −74.599
78 23.77 −77.026
80 49.61 −77.759
82 8.73 −77.593
bromine 35 Br 79 50.69 −76.068
81 49.31 −77.974
krypton 36 Kr 78 0.35 −74.160
80 2.28 −77.893
82 11.58 −80.589
83 11.49 −79.982
84 57.00 −82.431
86 17.30 −83.266
rubidium 37 Rb 85 72.17 −82.168
87 27.83 −84.595
strontium 38 Sr 84 0.56 −80.644
86 9.86 −84.522
87 7.00 −84.878
88 82.58 −87.920
yttrium 39 Y 89 100 −87.702
zirconium 40 Zr 90 51.45 −88.768
91 11.22 −87.891
92 17.15 −88.455
94 17.38 −87.266
96 2.80 −85.441
niobium 41 Nb 93 100 −87.209
molybdenum 42 Mo 92 14.84 −86.805
94 9.25 −88.410
95 15.92 −87.708
96 16.68 −88.791
97 9.55 −87.541
98 24.13 −88.112
100 9.63 −86.184
ruthenium 44 Ru 96 5.54 −86.072
98 1.87 −88.224
99 12.76 −87.617
100 12.60 −89.219
101 17.06 −87.950
102 31.55 −89.098
104 18.62 −88.091
rhodium 45 Rh 103 100 −88.022
palladium 46 Pd 102 1.020 −87.926
104 11.14 −89.391
105 22.33 −88.414
106 27.33 −89.905
108 26.46 −89.522
110 11.72 −88.350
silver 47 Ag 107 51.8392 −88.405
109 48.1608 −88.720
cadmium 48 Cd 106 1.25 −87.134
108 0.89 −89.253
110 12.49 −90.350
111 12.80 −89.254
112 24.13 −90.581
113 12.22 −89.050
114 28.73 −90.021
116 7.49 −88.720
indium 49 In 113 4.288 −89.366
115 95.712 −89.537
tin 50 Sn 112 0.973 −88.659
114 0.659 −90.558
115 0.339 −90.033
116 14.536 −91.525
117 7.676 −90.398
118 24.223 −91.653
119 8.585 −90.067
120 32.593 −91.103
122 4.629 −89.944
124 5.789 −88.236
antimony 51 Sb 121 57.213 −89.593
123 42.787 −89.222
tellurium 52 Te 120 0.096 −89.405
122 2.603 −90.311
123 0.908 −89.169
124 4.816 −90.523
125 7.139 −89.028
126 18.952 −90.070
128 31.687 −88.994
130 33.799 −87.353
iodine 53 I 127 100 −88.987
xenon 54 Xe 124 0.08913 −87.658
126 0.08880 −89.173
128 1.91732 −89.861
129 26.43964 −89.697
130 4.08271 −89.881
131 21.17961 −88.416
132 26.89157 −89.280
134 10.44232 −88.124
136 8.86590 −86.424
cesium 55 Cs 133 100 −88.076
barium 56 Ba 130 0.1058 −87.271
132 0.1012 −88.440
134 2.417 −88.954
135 6.592 −87.856
136 7.853 −88.892
137 11.232 −87.727
138 71.699 −88.267
lanthanum 57 La 138 0.09017 −86.529
139 99.91 −87.236
cerium 58 Ce 136 0.186 −86.500
138 0.251 −87.574
140 88.449 −88.088
142 11.114 −84.543
praseodymium 59 Pr 141 100 −86.026
neodymium 60 Nd 142 27.16 −85.960
143 12.18 −84.012
144 23.83 −83.758
145 8.30 −81.442
146 17.17 −80.936
148 5.74 −77.418
150 5.62 −73.694
samarium 62 Sm 144 3.0734 −81.976
147 14.9934 −79.276
148 11.2406 −79.347
149 13.8189 −77.147
150 7.3796 −77.061
152 26.7421 −74.773
154 22.7520 −72.465
europium 63 Eu 151 47.810 −74.663
153 52.190 −73.377
gadolinium 64 Gd 152 0.2029 −74.717
154 2.1809 −73.716
155 14.7998 −72.080
156 20.4664 −72.545
157 15.6518 −70.834
158 24.8347 −0.700
160 21.8635 −67.952
terbium 65 Tb 159 100 −69.542
dysprosium 66 Dy 156 0.056 −70.534
158 0.096 −70.417
160 2.34 −69.682
161 18.91 −68.065
162 25.51 −68.190
163 24.90 −66.390
164 28.19 −65.977
holmium 67 Ho 165 100 −64.907
erbium 68 Er 162 0.137 −66.346
164 1.609 −65.953
166 33.61 −64.934
167 22.93 −63.299
168 26.79 −62.999
170 14.93 −60.118
thulium 69 Tm 169 100 −61.282
ytterbium 70 Yb 168 0.127 −61.577
170 3.04 −60.772
171 14.28 −59.315
172 21.83 −59.264
173 16.13 −57.560
174 31.83 −56.953
176 12.76 −53.497
lutetium 71 Lu 175 97.416 −55.174
176 2.584 −53.391
hafnium 72 Hf 174 0.1620 −55.852
176 5.604 −54.584
177 18.5953 −52.890
178 27.811 −52.445
179 13.6210 −50.473
180 35.0802 −49.790
tantalum 73 Ta 180 0.0123 −48.935
181 99.9877 −48.441
tungsten 74 W 180 0.1198 −49.643
182 26.4985 −48.246
183 14.3136 −46.366
184 30.6422 −45.706
186 28.4259 −42.511
rhenium 75 Re 185 37.398 −43.821
187 62.602 −41.218
osmium 76 Os 184 0.0197 −44.254
186 1.5859 −42.999
187 1.9644 −41.220
188 13.2434 −41.138
189 16.1466 −38.988
190 26.2584 −38.708
192 40.7815 −35.882
iridium 77 Ir 191 37.272 −36.709
193 62.728 −34.536
platinum 78 Pt 190 0.013634 −37.325
192 0.782659 −36.296
194 32.96700 −34.779
195 33.831557 −32.812
196 25.24166 −32.663
198 7.16349 −29.923
gold 79 Au 197 100 −31.157
mercury 80 Hg 196 0.15344 −31.843
198 9.968 −30.970
199 16.873 −29.563
200 23.096 −29.520
201 13.181 −27.679
202 29.863 −27.362
204 6.865 −24.707
thallium 81 Tl 203 29.524 −25.775
205 70.476 −23.834
lead 82 Pb 204 1.4245 −25.123
206 24.1447 −23.801
207 22.0827 −22.467
208 52.3481 −21.764
bismuth 83 Bi 209 100 −18.273
thorium 90 Th 232 100 35.444
uranium 92 U 234 0.00548 38.141
235 0.7200 40.914
238 99.2745 47.304

The specification of Z, A, and the chemical symbol (a one- or two-letter abbreviation of the element’s name, say Sy) in the form AZSy identifies an isotope adequately for most purposes. Thus, in the standard notation, 11H refers to the simplest isotope of hydrogen and 23592U to an isotope of uranium widely used for nuclear power generation and nuclear weapons fabrication. (Authors who do not wish to use symbols sometimes write out the element name and mass number—hydrogen-1 and uranium-235 in the examples above.)

The term nuclide is used to describe particular isotopes, notably in cases where the nuclear rather than the chemical properties of an atom are to be emphasized. The lexicon of isotopes includes three other frequently used terms: isotones for isotopes of different elements with the same number of neutrons, isobars for isotopes of different elements with the same mass number, and isomers for isotopes identical in all respects except for the total energy content of the nuclei.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now