Which assessments are the most significant for a client who is believed to have myasthenia gravis

Disclaimer

Oxford University Press makes no representation, express or implied, that the drug dosages in this book are correct. Readers must therefore always … More Oxford University Press makes no representation, express or implied, that the drug dosages in this book are correct. Readers must therefore always check the product information and clinical procedures with the most up to date published product information and data sheets provided by the manufacturers and the most recent codes of conduct and safety regulations. The authors and the publishers do not accept responsibility or legal liability for any errors in the text or for the misuse or misapplication of material in this work. Except where otherwise stated, drug dosages and recommendations are for the non-pregnant adult who is not breastfeeding.

You do not currently have access to this chapter.

Overview

The Tensilon test uses the drug Tensilon (edrophonium) to help your doctor diagnose myasthenia gravis. Tensilon prevents the breakdown of the chemical acetylcholine, a neurotransmitter that nerve cells release to stimulate your muscles.

People with the chronic disease myasthenia gravis don’t have normal reactions to acetylcholine. Antibodies attack their acetylcholine receptors. This prevents muscles from being stimulated and makes muscles easy to tire.

A person tests positive for myasthenia gravis if their muscles get stronger after being injected with Tensilon.

Read more: Myasthenia gravis »

Your doctor might order the Tensilon test if they suspect that you have myasthenia gravis. If you’ve already been diagnosed, they may also perform the test to monitor your dosage of Tensilon or another drug of a similar type, called an anticholinesterase. Anticholinesterase drugs work by preventing the breakdown of acetylcholine in people with myasthenia gravis.

Labored breathing and extremely weak muscles are symptoms that your myasthenia gravis has worsened or that you’ve overdosed on the medication. The Tensilon test helps your doctor determine the right treatment.

Before the test, your doctor might set dietary restrictions or tell you to discontinue your use of certain medications or supplements. Let your doctor know all of the medications you’re taking, including herbs. Some substances can interfere with your test results.

The test will start with an intravenous (IV) needle placed in your arm or the back of your hand. A small amount of Tensilon will then be injected. Your stomach might feel upset or your heart rate might increase from the drug. Depending on why the test is being administered, the rest of the procedure will continue in different ways.

For diagnosing myasthenia gravis

If your doctor suspects that you have myasthenia gravis, they’ll tell you to perform a repetitive movement to test your muscles. This movement may be:

  • getting up and down from your chair
  • crossing and uncrossing your legs
  • holding your arms overhead until they get tired
  • counting backward from 100 until your voice starts to weaken

Each time you get tired, they’ll give you another dose of Tensilon. You might get 3 or 4 doses of the drug. Your doctor will observe whether the dose revives your strength each time. If it does, you may be diagnosed with myasthenia gravis. Your doctor may also administer another anticholinesterase drug, called neostigmine (Prostigmin), to confirm the diagnosis.

For checking Tensilon overdose and disease progression

If your doctor is trying to determine whether you’ve overdosed on Tensilon or if your disease is getting worse, they’ll inject a small amount of Tensilon and see what happens. Depending on the results, you’ll be given an additional drug, either neostigmine or atropine (Atreza), to stabilize you.

Each of these procedures should take about 15 to 30 minutes.

Your doctor should be able to tell you the test results right away. You’ll likely be put on long-term anticholinesterase drug therapy if you’re diagnosed with myasthenia gravis. Your doctor might want you to undergo additional testing to confirm the diagnosis.

For determining whether you overdosed on medication or your condition has worsened, this test provides and immediate answer. If an injection of Tensilon temporarily boosts your strength, the myasthenia gravis has gotten worse and you’ll need further treatment. If the Tensilon injection makes you even weaker, then you might have too much anticholinesterase medication in your system.

Anticholinesterase medication is taken when necessary. There’s no fixed dosage. This is because the symptoms of myasthenia gravis can vary each day due to factors such as stress and weather. The varying dosage makes an unintentional overdose more likely. Reducing your dosage should solve the problem if you have minimal side effects.

Contact your doctor immediately if you have:

  • noticeable muscular weakness
  • difficulty swallowing
  • respiratory problems

The Tensilon test has a number of common side effects. These usually last for less than a minute. Side effects include:

If you continue to feel unwell, the doctor may give you an injection of atropine. This drug reverses the effects of Tensilon.

In rare cases, the Tensilon test can have dangerous outcomes. These may include breathing failure or abnormal heart rhythms. That’s why the test is performed in places where emergency resuscitation equipment is available.

You might not be a good candidate for the test if you have:

If you have sleep apnea, your doctor might not recommend the Tensilon test. This is a condition in which you temporarily stop breathing while sleeping.

Let your doctor know if you have any of these conditions. They’ll be able to determine the right treatment options for you.

Myasthenia gravis is a chronic autoimmune, neuromuscular disease that causes weakness in the skeletal muscles that worsens after periods of activity and improves after periods of rest. These muscles are responsible for functions involving breathing and moving parts of the body, including the arms and legs.

The name myasthenia gravis, which is Latin and Greek in origin, means “grave, or serious, muscle weakness.” There is no known cure, but with current therapies, most cases of myasthenia gravis are not as “grave” as the name implies. Available treatments can control symptoms and often allow people to have a relatively high quality of life. Most individuals with the condition have a normal life expectancy.

top

What are the symptoms of myasthenia gravis?

The hallmark of myasthenia gravis is muscle weakness that worsens after periods of activity and improves after periods of rest. Certain muscles such as those that control eye and eyelid movement, facial expression, chewing, talking, and swallowing are often (but not always) involved in the disorder.

The onset of the disorder may be sudden, and symptoms often are not immediately recognized as myasthenia gravis. The degree of muscle weakness involved in myasthenia gravis varies greatly among individuals.

People with myasthenia gravis may experience the following symptoms:

  • weakness of the eye muscles (called ocular myasthenia)
  • drooping of one or both eyelids (ptosis)
  • blurred or double vision (diplopia)
  • a change in facial expression
  • difficulty swallowing
  • shortness of breath
  • impaired speech (dysarthria)
  • weakness in the arms, hands, fingers, legs, and neck.

Sometimes the severe weakness of myasthenia gravis may cause respiratory failure, which requires immediate emergency medical care.

top

What is a myasthenic crisis?

A myasthenic crisis is a medical emergency that occurs when the muscles that control breathing weaken to the point where individuals require a ventilator to help them breathe. It may be triggered by infection, stress, surgery, or an adverse reaction to medication. Approximately 15 to 20 percent of people with myasthenia gravis experience at least one myasthenic crisis. However, up to one-half of people may have no obvious cause for their myasthenic crisis. Certain medications have been shown to cause myasthenia gravis. However, sometimes these medications may still be used if it is more important to treat an underlying condition.

top

What causes myasthenia gravis?

Antibodies

Myasthenia gravis is an autoimmune disease, which means the immune system—which normally protects the body from foreign organisms—mistakenly attacks itself.

Myasthenia gravis is caused by an error in the transmission of nerve impulses to muscles. It occurs when normal communication between the nerve and muscle is interrupted at the neuromuscular junction—the place where nerve cells connect with the muscles they control.

Neurotransmitters are chemicals that neurons, or brain cells, use to communicate information. Normally when electrical signals or impulses travel down a motor nerve, the nerve endings release a neurotransmitter called acetylcholine that binds to sites called acetylcholine receptors on the muscle. The binding of acetylcholine to its receptor activates the muscle and causes a muscle contraction.

In myasthenia gravis, antibodies (immune proteins produced by the body’s immune system) block, alter, or destroy the receptors for acetylcholine at the neuromuscular junction, which prevents the muscle from contracting. This is most often caused by antibodies to the acetylcholine receptor itself, but antibodies to other proteins, such as MuSK (Muscle-Specific Kinase) protein, also can impair transmission at the neuromuscular junction. 

The thymus gland

The thymus gland controls immune function and may be associated with myasthenia gravis. It grows gradually until puberty, and then gets smaller and is replaced by fat. Throughout childhood, the thymus plays an important role in the development of the immune system because it is responsible for producing T-lymphocytes or T cells, a specific type of white blood cell that protects the body from viruses and infections.

In many adults with myasthenia gravis, the thymus gland remains large. People with the disease typically have clusters of immune cells in their thymus gland and may develop thymomas (tumors of the thymus gland). Thymomas are most often harmless, but they can become cancerous. Scientists believe the thymus gland may give incorrect instructions to developing immune cells, ultimately causing the immune system to attack its own cells and tissues and produce acetylcholine receptor antibodies—setting the stage for the attack on neuromuscular transmission.

top

Who gets myasthenia gravis?

Myasthenia gravis affects both men and women and occurs across all racial and ethnic groups. It most commonly impacts young adult women (under 40) and older men (over 60), but it can occur at any age, including childhood. Myasthenia gravis is not inherited nor is it contagious. Occasionally, the disease may occur in more than one member of the same family..

Although myasthenia gravis is rarely seen in infants, the fetus may acquire antibodies from a mother affected with myasthenia gravis—a condition called neonatal myasthenia. Neonatal myasthenia gravis is generally temporary, and the child’s symptoms usually disappear within two to three months after birth. Rarely, children of a healthy mother may develop congenital myasthenia. This is not an autoimmune disorder but is caused by defective genes that produce abnormal proteins in the neuromuscular junction and can cause similar symptoms to myasthenia gravis.

top

How is myasthenia gravis diagnosed?

A doctor may perform or order several tests to confirm the diagnosis of myasthenia gravis:

  • A physical and neurological examination. A physician will first review an individual’s medical history and conduct a physical examination. In a neurological examination, the physician will check muscle strength and tone, coordination, sense of touch, and look for impairment of eye movements.
  • An edrophonium test.  This test uses injections of edrophonium chloride to briefly relieve weakness in people with myasthenia gravis. The drug blocks the breakdown of acetylcholine and temporarily increases the levels of acetylcholine at the neuromuscular junction. It is usually used to test ocular muscle weakness.
  • A blood test.  Most individuals with myasthenia gravis have abnormally elevated levels of acetylcholine receptor antibodies. A second antibody—called the anti-MuSK antibody—has been found in about half of individuals with myasthenia gravis who do not have acetylcholine receptor antibodies. A blood test can also detect this antibody. However, in some individuals with myasthenia gravis, neither of these antibodies is present. These individuals are said to have seronegative (negative antibody) myasthenia.
  • Electrodiagnostics.  Diagnostic tests include repetitive nerve stimulation, which repeatedly stimulates a person’s nerves with small pulses of electricity to tire specific muscles. Muscle fibers in myasthenia gravis, as well as other neuromuscular disorders, do not respond as well to repeated electrical stimulation compared to muscles from normal individuals. Single fiber electromyography (EMG), considered the most sensitive test for myasthenia gravis, detects impaired nerve-to-muscle transmission. EMG can be very helpful in diagnosing mild cases of myasthenia gravis when other tests fail to demonstrate abnormalities. 
  • Diagnostic imaging.  Diagnostic imaging of the chest using computed tomography (CT) or magnetic resonance imaging (MRI) may identify the presence of a thymoma.
  • Pulmonary function testing.  Measuring breathing strength can help predict if respiration may fail and lead to a myasthenic crisis.

Because weakness is a common symptom of many other disorders, the diagnosis of myasthenia gravis is often missed or delayed (sometimes up to two years) in people who experience mild weakness or in those individuals whose weakness is restricted to only a few muscles.

top

How is myasthenia gravis treated?

Today, myasthenia gravis can generally be controlled. There are several therapies available to help reduce and improve muscle weakness.

  • Thymectomy.  This operation to remove the thymus gland (which often is abnormal in individuals with myasthenia gravis) can reduce symptoms and may cure some people, possibly by rebalancing the immune system. A NINDS-funded study found that thymectomy is helpful both for people with thymoma and those with no evidence of the tumors. The clinical trial followed 126 people with myasthenia gravis and no visible thymoma and found that the surgery reduced muscle weakness and the need for immunosuppressive drugs.
  • Monoclonal antibody.  This treatment targets the process by which acetylcholine antibodies injure the neuromuscular junction. In 2017, the U.S. Food and Drug Administration approved the use of eculizumab for the treatment of generalized myasthenia gravis in adults who test positive for the antiacetylcholine receptor (AchR) antibody.
  • Anticholinesterase medications.  Medications to treat the disorder include anticholinesterase agents such as mestinon or pyridostigmine, which slow the breakdown of acetylcholine at the neuromuscular junction and thereby improve neuromuscular transmission and increase muscle strength.
  • Immunosuppressive drugs.  These drugs improve muscle strength by suppressing the production of abnormal antibodies. They include prednisone, azathioprine, mycophenolate mofetil, and tacrolimus. The drugs can cause significant side effects and must be carefully monitored by a physician.
  • Plasmapheresis and intravenous immunoglobulin.  These therapies may be options in severe cases of myasthenia gravis. Individuals can have antibodies in their plasma (a liquid component in blood) that attack the neuromuscular junction. These treatments remove the destructive antibodies, although their effectiveness usually only lasts for a few weeks to months.
    • Plasmapheresis is a procedure using a machine to remove harmful antibodies in plasma and replace them with good plasma or a plasma substitute.
    • Intravenous immunoglobulin is a highly concentrated injection of antibodies pooled from many healthy donors that temporarily changes the way the immune system operates.  It works by binding to the antibodies that cause myasthenia gravis and removing them from circulation.

top

What is the prognosis?

With treatment, most individuals with myasthenia can significantly improve their muscle weakness and lead normal or nearly normal lives.  

Some cases of myasthenia gravis may go into remission—either temporarily or permanently— and muscle weakness may disappear completely so that medications can be discontinued. Stable, long-lasting complete remissions are the goal of thymectomy and may occur in about 50 percent of individuals who undergo this procedure.

top

What research is being done?

The mission of the National Institute of Neurological Disorders and Stroke (NINDS) is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.  The NINDS is a component of the National Institutes of Health (NIH), the leading supporter of biomedical research in the world.

Although there is no cure for myasthenia gravis, management of the disorder has improved over the past 30 years. There is a greater understanding about the causes, structure and function of the neuromuscular junction, the fundamental aspects of the thymus gland and of autoimmunity. Technological advances have led to more timely and accurate diagnosis of myasthenia gravis and new and enhanced therapies have improved treatment options. Researchers are working to develop better medications, identify new ways to diagnose and treat individuals, and improve treatment options.

Medication

Some people with myasthenia gravis do not respond favorably to available treatment options, which usually include long-term suppression of the immune system. New drugs are being tested, either alone or in combination with existing drug therapies, to see if they are more effective in targeting the causes of the disease.

Diagnostics and biomarkers

In addition to developing new medications, researchers are trying to find better ways to diagnose and treat this disorder. For example, NINDS-funded researchers are exploring the assembly and function of connections between nerves and muscle fibers to understand the fundamental processes in neuromuscular development. This research could reveal new therapies for neuromuscular diseases like myasthenia gravis.

Researchers are also exploring better ways to treat myasthenia gravis by developing new tools to diagnose people with undetectable antibodies and identify potential biomarkers (signs that can help diagnose or measure the progression of a disease) to predict an individual’s response to immunosuppressive drugs.

New treatment options
Findings from a recent NINDS-supported study yielded conclusive evidence about the benefits of surgery for individuals without thymoma, a subject that had been debated for decades. Researchers hope that this trial will become a model for rigorously testing other treatment options, and that other studies will continue to examine different therapies to see if they are superior to standard care options. 

Assistive technologies, such as magnetic devices, may also help people with myasthenia gravis to control some symptoms of the disorder.

top

Where can I get more information?

For more information on neurological disorders or research programs funded by the National Institute of Neurological Disorders and Stroke, contact the Institute's Brain Resources and Information Network (BRAIN) at:

BRAIN P.O. Box 5801 Bethesda, MD  20824 800-354-9424

www.ninds.nih.gov

Neuester Beitrag

Stichworte