What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?

Amir Y., Harel M., Malach R. Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. Journal of Comparative Neurology. 1993;334:19–46. [PubMed] [Google Scholar]

Amunts K., Schleicher A., Bürgel U., Mohlberg H., Uylings H.B., Zilles K. Broca's region revisited: Cytoarchitecture and intersubject variability. Journal of Comparative Neurology. 1999;412:319–341. [PubMed] [Google Scholar]

Amunts K., Jäncke L., Mohlberg H., Steinmetz H., Zilles K. Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia. 2000;38:304–312. [PubMed] [Google Scholar]

Banich M.T. The missing link: The role of interhemispheric interaction in attentional processing. Brain and Cognition. 1998;36:128–157. [PubMed] [Google Scholar]

Behrens T.E.J., Woolrich M.W., Jenkinson M., Johansen-Berg H., Nunes R.G., Clare S. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine. 2003;50:1077–1088. [PubMed] [Google Scholar]

Belger A., Banich M.T. Costs and benefits of integrating information between the cerebral hemispheres: A computational perspective. Neuropsychology. 1998;12:380–398. [PubMed] [Google Scholar]

Binder J.R., Frost J.A., Hammeke T.A., Cox R.W., Rao S.M., Prieto T. Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience. 1997;17:353–362. [PMC free article] [PubMed] [Google Scholar]

Bitan T., Booth J.R., Choy J., Burman D.D., Gitelman D.R., Mesulam M.M. Shifts of effective connectivity within a language network during rhyming and spelling. Journal of Neuroscience. 2005;25:5397–5403. [PMC free article] [PubMed] [Google Scholar]

Bokde A.L., Tagamets M.A., Friedman R.B., Horwitz B. Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron. 2001;30:609–617. [PubMed] [Google Scholar]

Bollen K.A. John Wiley; New York: 1989. Structural equations with latent variables. [Google Scholar]

Bookheimer S. Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Reviews of Neuroscience. 2002;25:151–188. [PubMed] [Google Scholar]

Bradshaw J.L., Nettleton N.C. The nature of hemispheric specialization in man. Behavioral and Brain Sciences. 1981;4:51–63. [Google Scholar]

Brancucci A., Babiloni C., Vecchio F., Galderisi S., Mucci A., Tecchio F. Decrease of functional coupling between left and right auditory cortices during dichotic listening: An electroencephalography study. Neuroscience. 2005;136:323–332. [PubMed] [Google Scholar]

Broca P. Localisations des fonctions cérébrales. Siège de la faculté du langage articulé Bulletin de la Société d’Anthropologie. 1863;4:200–208. [Google Scholar]

Brodmann K. Barth; Leipzig: 1909. Vergleichende lokalisationslehre der großhirnrinde. [Google Scholar]

Büchel C., Friston K.J. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex. 1997;7:768–778. [PubMed] [Google Scholar]

Büchel C., Raedler T., Sommer M., Sach M., Weiller C., Koch M.A. White matter asymmetry in the human brain: A diffusion tensor MRI study. Cerebral Cortex. 2004;14:945–951. [PubMed] [Google Scholar]

Bullmore E., Horwitz B., Honey G., Brammer M., Williams S., Sharma T. How good is good enough in path analysis of fMRI data? NeuroImage. 2000;11:289–301. [PubMed] [Google Scholar]

Bürgel U., Schormann T., Schleicher A., Zilles K. Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: Position and spatial variability of the optic radiation. NeuroImage. 1999;10:489–499. [PubMed] [Google Scholar]

Buxton R.B., Wong E.C., Frank L.R. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine. 1998;39:855–864. [PubMed] [Google Scholar]

Cardoso de Oliveira S., Gribova A., Donchin O., Bergman H., Vaadia E. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. European Journal of Neuroscience. 2001;14:1881–1896. [PubMed] [Google Scholar]

Cavada C., Goldman-Rakic P.S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. Journal of Comparative Neurology. 1989;287:393–421. [PubMed] [Google Scholar]

Chi J.G., Dooling E.C., Gilles F.H. Left–right asymmetries of the temporal speech areas of the human fetus. Archives of Neurology. 1977;34:346–348. [PubMed] [Google Scholar]

Chiarello C., Maxfield L. Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain and Cognition. 1996;30:81–108. [PubMed] [Google Scholar]

Cohen-Cory S. The developing synapse: Construction and modulation of synaptic structures and circuits. Science. 2002;298:770–776. [PubMed] [Google Scholar]

Corballis M.C., Corballis P.M., Fabri M. Redundancy gain in simple reaction time following partial and complete callosotomy. Neuropsychologia. 2003;42:71–81. [PubMed] [Google Scholar]

Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience. 2002;3:201–215. [PubMed] [Google Scholar]

Coull J.T., Büchel C., Friston K.J., Frith C.D. Noradrenergically mediated plasticity in a human attentional neuronal network. NeuroImage. 1999;10:705–715. [PubMed] [Google Scholar]

Crow T.J. Who forgot Paul Broca? The origin of language as test case for speciation theory. Journal of Linguistics. 2005;41:133–156. [Google Scholar]

Damasio H., Damasio A. Oxford University Press; New York: 1989. Lesion analysis in neuropsychology. [Google Scholar]

David O., Kiebel S.J., Harrison L.M., Mattout J., Kilner J.M., Friston K.J. Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage. 2006;30:1255–1272. [PubMed] [Google Scholar]

de Lacoste M.C., Horvath D.S., Woodward D.J. Possible sex differences in the developing human fetal brain. Journal of Clinical and Experimental Neuropsychology. 1991;13:831–846. [PubMed] [Google Scholar]

Dejerine J. Contribution à l’étude anatomoclinique et clinique des différentes variétés de cécité verbale. Mémoires de la Société de Biologie. 1892;4:61–90. [Google Scholar]

Donoghue M.J., Rakic P. Molecular gradients and compartments in the embryonic primate cerebral cortex. Cerebral Cortex. 1999;9:586–600. [PubMed] [Google Scholar]

Eickhoff S.B., Stephan K.E., Mohlberg H., Grefkes C., Fink G.R., Amunts K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 2005;25:1325–1335. [PubMed] [Google Scholar]

Endrass T., Mohr B., Rockstroh B. Reduced interhemispheric transmission in schizophrenia patients: Evidence from event-related potentials. Neuroscience Letters. 2002;320:57–60. [PubMed] [Google Scholar]

Engel A.K., König P., Kreiter A.K., Singer W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science. 1991;252:1177–1179. [PubMed] [Google Scholar]

Finger S. Oxford University Press; Oxford: 2000. Minds behind the brain: A history of the pioneers and their discoveries. [Google Scholar]

Fink G.R., Halligan P.W., Marshall J.C., Frith C.D., Frackowiak R.S., Dolan R.J. Where in the brain does visual attention select the forest and the trees? Nature. 1996;382:626–628. [PubMed] [Google Scholar]

Fink G.R., Marshall J.C., Shah N.J., Weiss P.H., Halligan P.W., Grosse-Ruyken M. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology. 2000;54:1324–1331. [PubMed] [Google Scholar]

Fink G.R., Marshall J.C., Weiss P.H., Zilles K. The neural basis of vertical and horizontal line bisection judgments: An fMRI study of normal volunteers. NeuroImage. 2001;14:S59–S67. [PubMed] [Google Scholar]

Friston K.J. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping. 1994;2:56–78. [Google Scholar]

Friston K.J., Büchel C., Fink G.R., Morris J., Rolls E., Dolan R.J. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage. 1997;6:218–229. [PubMed] [Google Scholar]

Friston K.J., Mechelli A., Turner R., Price C.J. Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics. NeuroImage. 2000;12:466–477. [PubMed] [Google Scholar]

Friston K.J. Bayesian estimation of dynamical systems: An application to fMRI. NeuroImage. 2002;16:513–530. [PubMed] [Google Scholar]

Friston K.J. Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annual Reviews of Neuroscience. 2002;25:221–250. [PubMed] [Google Scholar]

Friston K.J., Harrison L., Penny W. Dynamic causal modelling. NeuroImage. 2003;19:1273–1302. [PubMed] [Google Scholar]

Freud, S. (1891). Zur Auffassung der Aphasien. Vienna: Deuticke.

Fukuchi-Shimogori T., Grove E.A. Neocortex patterning by the secreted signaling molecule FGF8. Science. 2001;294:1071–1074. [PubMed] [Google Scholar]

Funnell M.G., Corballis P.M., Gazzaniga M.S. Insights into the functional specificity of the human corpus callosum. Brain. 2000;123:920–926. [PubMed] [Google Scholar]

Galaburda A.M., LeMay M., Kemper T.L., Geschwind N. Right–left asymmetrics in the brain. Science. 1978;199:852–856. [PubMed] [Google Scholar]

Galuske R.A., Schlote W., Bratzke H., Singer W. Interhemispheric asymmetries of the modular structure in human temporal cortex. Science. 2000;289:1946–1949. [PubMed] [Google Scholar]

Garcia-Castro M.I., Vielmetter E., Bronner-Fraser M. N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left–right asymmetry. Science. 2000;288:1047–1051. [PubMed] [Google Scholar]

Gazzaniga M. Cerebral specialization and interhemispheric communication. Brain. 2000;123:1293–1326. [PubMed] [Google Scholar]

Gitelman D.R., Nobre A.C., Parrish T.B., LaBar K.S., Kim Y.H., Meyer J.R. A large-scale distributed network for covert spatial attention: Further anatomical delineation based on stringent behavioural and cognitive controls. Brain. 1999;122:1093–1106. [PubMed] [Google Scholar]

Gitelman D.R., Parrish T.B., Friston K.J., Mesulam M.M. Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage. 2002;15:970–982. [PubMed] [Google Scholar]

Gong G., Jiang T., Zhu C., Zang Y., Wang F., Xie S. Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Human Brain Mapping. 2005;24:92–98. [PMC free article] [PubMed] [Google Scholar]

Gupta R.K., Hasan K.M., Trivedi R., Pradhan M., Das V., Parikh N.A. Diffusion tensor imaging of the developing human cerebrum. Journal of Neuroscience Research. 2005;81:172–178. [PubMed] [Google Scholar]

Hagoort P., Hald L., Bastiaansen M., Petersson K.M. Integration of word meaning and world knowledge in language comprehension. Science. 2004;304:438–441. [PubMed] [Google Scholar]

Halligan P.W., Fink G.R., Marshall J.C., Vallar G. Spatial cognition: Evidence from visual neglect. Trends in Cognitive Sciences. 2003;7:125–133. [PubMed] [Google Scholar]

Halpern M.E., Güntürkün O., Hopkins W.D., Rogers L.J. Lateralization of the vertebrate brain: Taking the side of model systems. Journal of Neuroscience. 2005;25:10351–10357. [PMC free article] [PubMed] [Google Scholar]

Haynes J.D., Tregellas J., Rees G. Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proceedings of the National Academy of Sciences USA. 2005;102:14925–14930. [PMC free article] [PubMed] [Google Scholar]

Heim S., Keil A. Large-scale neural correlates of developmental dyslexia. European Child and Adolescent Psychiatry. 2006;13:125–140. [PubMed] [Google Scholar]

Hellige J.B. Hemispheric asymmetry. Annual Reviews of Psychology. 1990;41:55–80. [PubMed] [Google Scholar]

Herbert M.R., Ziegler D.A., Deutsch C.K., O’Brien L.M., Kennedy D.N., Filipek P.A. Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain. 2005;128:213–226. [PubMed] [Google Scholar]

Highley J.R., Walker M.A., Esiri M.M., Crow T.J., Harrison P.J. Asymmetry of the uncinate fasciculus: A post-mortem study of normal subjects and patients with schizophrenia. Cerebral Cortex. 2002;12:1218–1224. [PubMed] [Google Scholar]

Horwitz B., Rumsey J.M., Donohue B.C. Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Sciences USA. 1998;95:8939–8944. [PMC free article] [PubMed] [Google Scholar]

Hua J.Y., Smith S.J. Neural activity and the dynamics of central nervous system development. Nature Neuroscience. 2004;7:327–332. [PubMed] [Google Scholar]

Hugdahl K. Wiley; New York: 1988. Handbook of dichotic listening: Theory, methods, and research. [Google Scholar]

Huntley G.W., Gil O., Bozdagi O. The cadherin family of cell adhesion molecules: Multiple roles in synaptic plasticity. Neuroscientist. 2002;8:221–233. [PubMed] [Google Scholar]

Hutsler J.J., Gazzaniga M.S. Acetylcholinesterase staining in human auditory and language cortices: Regional variation of structural features. Cerebral Cortex. 1996;6:260–270. [PubMed] [Google Scholar]

Hutsler J.J., Galuske R.A. Hemispheric asymmetries in cerebral cortical networks. Trends in Neuroscience. 2003;26:429–435. [PubMed] [Google Scholar]

Jackson J.H. Case of large cerebral tumour without optic neuritis and with left hemiplegia and imperception. Royal London Ophthalmic Hospital Reports. 1876;8:434–444. [Google Scholar]

Jenner A.R., Rosen G.D., Galaburda A.M. Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains. Annals of Neurology. 1999;46:189–196. [PubMed] [Google Scholar]

Joynt R.J. The corpus callosum: History of thought regarding its function. In: Kinsbourne M., Smith W.L., editors. Hemispheric disconnection and cerebral function. C.C. Thomas; Springfield, Illinois: 1974. [Google Scholar]

Keenan J.P., Thangaraj V., Halpern A.R., Schlaug G. Absolute pitch and planum temporale. NeuroImage. 2001;14:1402–1408. [PubMed] [Google Scholar]

Kinsbourne M. The cerebral basis of lateral asymmetries of attention. Acta Psychologica. 1970;33:193–201. [PubMed] [Google Scholar]

Klingberg T., Hedehus M., Temple E., Salz T., Gabrieli J.D.E., Moseley M.E. Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron. 2000;25:493–500. [PubMed] [Google Scholar]

Klöppel S., Büchel C. Alternatives to the Wada test: A critical view of functional magnetic resonance imaging in preoperative use. Current Opinion in Neurology. 2005;18:418–423. [PubMed] [Google Scholar]

Koshiba M., Nakamura S., Deng C., Rogers L.J. Light-dependent development of asymmetry in the ipsilateral and contralateral thalamofugal visual projections of the chick. Neuroscience Letters. 2003;336:81–84. [PubMed] [Google Scholar]

Lashley K.S. Functional determinants of cerebral localization. Archives of Neurology and Psychiatry (Chicago) 1937;38:371–387. [Google Scholar]

Levy J., Trevarthen C. Metacontrol of hemispheric function in human split-brain patients. Journal of Experimental Psychology: Human Perception and Performance. 1976;2:299–312. [PubMed] [Google Scholar]

Liederman J. The dynamics of interhemispheric collaboration and hemispheric control. Brain and Cognition. 1998;36:193–208. [PubMed] [Google Scholar]

Liepmann H. Die linke Hemisphäre und das Handeln. Münchner Medizinische Wochenschrift. 1905;49:2375–2378. [Google Scholar]

Liepmann H., Maas O. Fall von linksseitiger Agraphie und Apraxie bei rechtsseitiger Lähmung. Zeitschrift für Psychologie und Neurologie. 1907;10:214–227. [Google Scholar]

Liepmann H. Zur Lokalisation der Hirnfunktionen mit besonderer Berücksichtigung der Beteiligung der beiden Hemisphären an den Gedächtnisstörungen. Zeitschrift für Psychologie. 1912;63:1–18. [Google Scholar]

Lipschutz B., Kolinsky R., Damhaut P., Wikler D., Goldman S. Attention-dependent changes of activation and connectivity in dichotic listening. NeuroImage. 2002;17:643–656. [PubMed] [Google Scholar]

Lerch J.P., Worsley K., Shaw W.P., Greenstein D.K., Lenroot R.K., Giedd J. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage. 2006;31:993–1003. [PubMed] [Google Scholar]

Luck S.J., Chelazzi L., Hillyard S.A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. Journal of Neurophysiology. 1997;77:24–42. [PubMed] [Google Scholar]

Luders E., Narr K.L., Thompson P.M., Rex D.E., Jäncke L., Toga A.W. Hemispheric asymmetries in cortical thickness. Cerebral Cortex. 2006;16:1232–1238. [PubMed] [Google Scholar]

Manetopoulos C., Hansson A., Karlsson J., Jonsson J.I., Axelson H. The LIM-only protein LMO4 modulates the transcriptional activity of HEN1. Biochemical and Biophysical Research Communications. 2003;307:891–899. [PubMed] [Google Scholar]

Manns M., Güntürkün O. Monocular deprivation alters the direction of functional and morphological asymmetries in the pigeon's visual system. Behavioral Neuroscience. 1999;113:1–10. [PubMed] [Google Scholar]

Marshall J.C. Minds, machines and metaphors. Social Studies of Science. 1977;7:475–488. [Google Scholar]

Marshall J.C., Fink G.R. Spatial cognition: Where we were and where we are. NeuroImage. 2001;14:S2–S7. [PubMed] [Google Scholar]

Marshall J.C., Fink G.R. Cerebral localization, then and now. NeuroImage. 2003;20:S2–S7. [PubMed] [Google Scholar]

Mattout J., Phillips C., Penny W.D., Rugg M.D., Friston K.J. MEG source localization under multiple constraints: An extended Bayesian framework. Neuroimage. 2006;30:753–767. [PubMed] [Google Scholar]

McGuire P.K., Bates J.F., Goldman-Rakic P.S. Interhemispheric integration: I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cerebral Cortex. 1991;1:390–407. [PubMed] [Google Scholar]

McIntosh A.R., Gonzalez-Lima F. Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effects of acoustic startle habituation on the auditory system. Brain Research. 1991;547:295–302. [PubMed] [Google Scholar]

McIntosh A.R., Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapping. 1994;2:2–22. [Google Scholar]

McIntosh A.R., Grady C.L., Ungerleider L.G., Haxby J.V., Rapoport S.I., Horwitz B. Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience. 1994;14:655–666. [PMC free article] [PubMed] [Google Scholar]

McIntosh A.R. Towards a network theory of cognition. Neural Networks. 2000;13:861–870. [PubMed] [Google Scholar]

McIntosh A.R., Lobaugh N.J. When is a word not a word? Science. 2004;301:322–323. [PubMed] [Google Scholar]

McIntosh A.R., Lobaugh N.J. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage. 2004;23:S250–S263. [PubMed] [Google Scholar]

Mechelli A., Penny W.D., Price C.J., Gitelman D.R., Friston K.J. Effective connectivity and intersubject variability: Using a multisubject network to test differences and commonalities. NeuroImage. 2002;17:1459–1469. [PubMed] [Google Scholar]

Miran M., Miran E. Cerebral asymmetries: Neuropsychological measurement and theoretical issues. Biological Psychology. 1984;19:295–304. [PubMed] [Google Scholar]

Mitchell R.L., Crow T.J. Right hemisphere language functions and schizophrenia: The forgotten hemisphere? Brain. 2005;128:963–978. [PubMed] [Google Scholar]

Monfils M.H., VandenBerg P.M., Kleim J.A., Teskey G.C. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex. Cerebral Cortex. 2004;14:586–593. [PubMed] [Google Scholar]

Monfils M.H., Teskey G.C. Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse. 2004;53:114–121. [PubMed] [Google Scholar]

Mori S., Barker P.B. Diffusion magnetic resonance imaging: Its principle and applications. Anatomical Record. 1999;257:102–109. [PubMed] [Google Scholar]

Nagae S., Moscovitch M. Cerebral hemispheric differences in memory of emotional and non-emotional words in normal individuals. Neuropsychologia. 2002;40:1601–1607. [PubMed] [Google Scholar]

Narain C., Scott S.K., Wise R.J., Rosen S., Leff A., Iversen S.D. Defining a left-lateralized response specific to intelligible speech using fMRI. Cerebral Cortex. 2003;13:1362–1368. [PubMed] [Google Scholar]

Newton J.R., Ellsworth C., Miyakawa T., Tonegawa S., Sur M. Acceleration of visually cued conditioned fear through the auditory pathway. Nature Neuroscience. 2004;7:968–973. [PubMed] [Google Scholar]

Nowicka A., Grabowska A., Fersten E. Interhemispheric transmission of information and functional asymmetry of the human brain. Neuropsychologia. 1996;34:147–151. [PubMed] [Google Scholar]

Nucifora P.G., Verma R., Melhem E.R., Gur R.E., Gur R.C. Leftward asymmetry in relative fiber density of the arcuate fasciculus. Neuroreport. 2005;16:791–794. [PubMed] [Google Scholar]

Parker G.J., Stephan K.E., Barker G.J., Rowe J.B., MacManus D.G., Wheeler-Kingshott C.A. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. NeuroImage. 2002;15:797–809. [PubMed] [Google Scholar]

Parker G.J., Luzzi S., Alexander D.C., Wheeler-Kingshott C.A., Ciccarelli O., Lambon Ralph M.A. Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImage. 2005;24:656–666. [PubMed] [Google Scholar]

Passingham R.E., Stephan K.E., Kötter R. The anatomical basis for functional localization in the cortex. Nature Reviews Neuroscience. 2002;3:606–616. [PubMed] [Google Scholar]

Penny W.D., Stephan K.E., Mechelli A., Friston K.J. Modelling functional integration: A comparison of structural equation and dynamic causal models. NeuroImage. 2004;23:S264–S274. [PubMed] [Google Scholar]

Penny W.D., Stephan K.E., Mechelli A., Friston K.J. Comparing dynamic causal models. NeuroImage. 2004;22:1157–1172. [PubMed] [Google Scholar]

Petty R.G. Structural asymmetries of the human brain and their disturbance in schizophrenia. Schizophrenia Bulletin. 1999;25:121–139. [PubMed] [Google Scholar]

Pierpaoli C., Basser P.J. Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine. 1996;36:893–906. [PubMed] [Google Scholar]

Poffenberger A.T. Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centres. Archives of Psychology. 1912;23:1–73. [Google Scholar]

Redies C., Treubert-Zimmermann U., Luo J. Cadherins as regulators for the emergence of neural nets from embryonic divisions. Journal of Physiology (Paris) 2003;97:5–15. [PubMed] [Google Scholar]

Rogers L.J. Light input and the reversal of functional lateralization in the chicken brain. Behavioral Brain Research. 1990;38:211–221. [PubMed] [Google Scholar]

Rogers L.J., Deng C. Light experience and lateralization of the two visual pathways in the chick. Behavioral Brain Research. 1999;98:277–287. [PubMed] [Google Scholar]

Rosen G.D., Sherman G.F., Galaburda A.M. Ontogenesis of neocortical asymmetry: A [3H]thymidine study. Neuroscience. 1991;41:779–790. [PubMed] [Google Scholar]

Rowe J.B., Stephan K.E., Friston K.J., Frackowiak R.J., Lees A., Passingham R.E. Attention to action in Parkinson's disease. Impaired effective connectivity among frontal cortical regions. Brain. 2002;125:276–289. [PubMed] [Google Scholar]

Rubenstein J.L., Anderson S., Shi L., Miyashita-Lin E., Bulfone A., Hevner R. Genetic control of cortical regionalization and connectivity. Cerebral Cortex. 1999;9:524–532. [PubMed] [Google Scholar]

Ruff C.C., Driver J. Attentional preparation for a lateralized visual distractor: Behavioral and fMRI evidence. Journal of Cognitive Neuroscience. 2006;18:522–538. [PubMed] [Google Scholar]

Salinas P.C., Price S.R. Cadherins and catenins in synapse development. Current Opinion in Neurobiology. 2005;15:73–80. [PubMed] [Google Scholar]

Schack B., Weiss S., Rappelsberger P. Cerebral information transfer during word processing: Where and when does it occur and how fast is it? Human Brain Mapping. 2003;19:18–36. [PMC free article] [PubMed] [Google Scholar]

Schlaggar B.L., O’Leary D.D. Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science. 1991;252:1556–1560. [PubMed] [Google Scholar]

Schlaug G., Jäncke L., Huang Y., Steinmetz H. In vivo evidence of structural brain asymmetry in musicians. Science. 1995;267:699–701. [PubMed] [Google Scholar]

Schlösser R., Gesierich T., Kaufmann B., Vucurevic G., Hunsche S., Gawehn J. Altered effective connectivity during working memory performance in schizophrenia: A study with fMRI and structural equation modeling. NeuroImage. 2003;19:751–763. [PubMed] [Google Scholar]

Seldon H.L. Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Research. 1981;229:277–294. [PubMed] [Google Scholar]

Sergent J. Role of the input in visual hemispheric asymmetries. Psychological Bulletin. 1983;93:481–512. [PubMed] [Google Scholar]

Sherman S.M., Guillery R.W. On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators” Proceedings of the National Academy of Sciences USA. 1998;95:7121–7126. [PMC free article] [PubMed] [Google Scholar]

Smith A.P.R., Stephan K.E., Rugg M.D., Dolan R.J. Task and content modulate amygdala-hippocampal connectivity in emotional retrieval. Neuron. 2006;49:631–638. [PubMed] [Google Scholar]

Stephan K.E., Marshall J.C., Friston K.J., Rowe J.B., Ritzl A., Zilles K. Lateralized cognitive processes and lateralized task control in the human brain. Science. 2003;301:384–386. [PubMed] [Google Scholar]

Stephan K.E., Harrison L.M., Penny W.D., Friston K.J. Biophysical models of fMRI responses. Current Opinion in Neurobiology. 2004;14:629–635. [PubMed] [Google Scholar]

Stephan K.E. On the role of general systems theory for functional neuroimaging. Journal of Anatomy. 2004;205:443–470. [PMC free article] [PubMed] [Google Scholar]

Stephan K.E., Penny W.D., Marshall J.C., Fink G.R., Friston K.J. Investigating the functional role of callosal connections with dynamic causal models. Annals of the New York Academy of Sciences. 2005;1064:16–36. [PMC free article] [PubMed] [Google Scholar]

Strogatz S.H. Exploring complex networks. Nature. 2001;410:268–276. [PubMed] [Google Scholar]

Sun T., Patoine C., Abu-Khalil A., Visvader J., Sum E., Cherry T.J. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science. 2005;308:1794–1798. [PMC free article] [PubMed] [Google Scholar]

Sur M., Leamey C.A. Development and plasticity of cortical areas and networks. Nature Reviews Neuroscience. 2001;2:251–262. [PubMed] [Google Scholar]

Sur M., Rubenstein J.L. Patterning and plasticity of the cerebral cortex. Science. 2005;310:805–810. [PubMed] [Google Scholar]

Tagamets M.A., Novick J.M., Chalmers M.L., Friedman R.B. A parametric approach to orthographic processing in the brain: An fMRI study. Journal of Cognitive Neuroscience. 2000;12:281–297. [PubMed] [Google Scholar]

Toga A.W., Thompson P.M. Mapping brain asymmetry. Nature Reviews Neuroscience. 2003;4:37–48. [PubMed] [Google Scholar]

Tuch D.S., Salat D.H., Wisco J.J., Zaleta A.K., Hevelone N.D., Rosas H.D. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proceedings of the National Academy of Sciences USA. 2005;102:12212–12217. [PMC free article] [PubMed] [Google Scholar]

Varela F., Lachaux J.P., Rodriguez E., Martinerie J. The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience. 2001;2:229–239. [PubMed] [Google Scholar]

Vu D., Marin P., Walzer C., Cathieni M.M., Bianchi E.N., Saidji F. Transcription regulator LMO4 interferes with neuritogenesis in human SH-SY5Y neuroblastoma cells. Molecular Brain Research. 2003;115:93–103. [PubMed] [Google Scholar]

Wernicke C. Cohn & Weigart; Breslau: 1874. Der aphasische symptomenkomplex. [Google Scholar]

Witelson S.F., Pallie W. Left hemisphere specialization for language in the newborn. Neuroanatomical evidence of asymmetry. Brain. 1973;96:641–646. [PubMed] [Google Scholar]

Young M.P., Hilgetag C.C., Scannell J.W. On imputing function to structure from the behavioural effects of brain lesions. Philosophical Transactions of the Royal Society London B: Biological Sciences. 2000;355:147–161. [PMC free article] [PubMed] [Google Scholar]


Page 2

What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?

Results from a study of healthy adults by Büchel et al. (2004) who applied voxel-based morphometry to fractional anisotropy (FA), a diffusion-based measure of white matter microstructure (Pierpaoli & Basser, 1996). Testing for hemispheric differences in FA across the whole brain, they found a selective increase in the left arcuate fasciculus compared to the right (p < 0.05, whole-brain corrected for multiple comparisons). After initially demonstrating this asymmetry in a group of 15 volunteers (A), they subsequently replicated this finding in an independent group of 28 volunteers (B). Figure reproduced with permission from Oxford University Press.

  • What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?
  • What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?
  • What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?
  • What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?
  • What term describes when the left and right hemispheres of the cerebral cortex undergo functional specialization?

Click on the image to see a larger version.