What is the probability of getting tail side on coin and a 6 on a dice if a dice is rolled and a coin is tossed together?

Probability is a part of mathematics that deals with the possibility of happening of events. It is to forecast that what are the possible chances that the events will occur or the event will not occur. The probability as a number lies between 0 and 1 only and can also be written in the form of a percentage or fraction. The probability of likely event A is often written as P(A). Here P shows the possibility and A shows the happening of an event. Similarly, the probability of any event is often written as P(). When the end outcome of an event is not confirmed we use the probabilities of certain outcomes—how likely they occur or what are the chances of their occurring.

To understand probability more accurately we take an example as rolling a dice:

The possible outcomes are — 1, 2, 3, 4, 5, and 6.

The probability of getting any of the outcomes is 1/6. As the possibility of happening of an event is an equally likely event so there are same chances of getting any number in this case it is either 1/6 or 50/3%.

Formula of Probability

Probability of an event, P(A) = (Number of ways it can occur) ⁄ (Total number of outcomes)

Types of Events

  • Equally Likely Events: After rolling dice, the probability of getting any of the likely events is 1/6. As the event is an equally likely event so there is same possibility of getting any number in this case it is either 1/6 in fair dice rolling.
  • Complementary Events: There is a possibility of only two outcomes which is an event will occur or not. Like a person will play or not play, buying a laptop or not buying a laptop, etc. are examples of complementary events.

Solution:

Use the binomial distribution directly. Let us assume that the number of heads is represented by x  (where a result of heads is regarded as success) and in this case X = 5

Assuming that the coin is unbiased, you have a probability of success ‘p’(where p is considered as success) is 1/2 and the probability of failure ‘q’ is 1/2(where q is considered as failure). The number of trials is represented by the letter ’n’ and for this question n = 7.

Now just use the probability function for a binomial distribution:

P(X = x) = nCxpxqn-x

Using the information in the problem we get

P(X = 5) = (7C5)(1/2)5(1/2)2

= 21 × 1/32 × 1/4

= 21/128

Hence, the probability of flipping a coin 7 times and getting heads 5 times is 21/128.

Similar Questions

Question 1: What is the probability of flipping a coin 20 times and getting 5 heads?

Answer:

Each coin can either land on heads or on tails, 2 choices.  

(According to the binomial concept)

This gives us a total of 220 possibilities for flipping 20 coins.

Now, how many ways can we get 5 heads? This is 20 choose 5, or (20C5)  

This means our probability is (20C5)/220 = 15504⁄1048576 ≈ .01478

Question 2: What is the probability of 2 heads when 2 coins are tossed together?

Solution:

2 coin tosses. This means,

Total observations = 4(According to binomial concept)  

Required outcome → 2 Heads {H,H}

This can occur only ONCE!

Thus, required outcome = 1  

Probability (2 Heads) = (1⁄2)2 = 1/4

Article Tags :

What is the probability of getting tail side on coin and a 6 on a dice if a dice is rolled and a coin is tossed together?

Text Solution

Answer : `1/6`

Solution : Let A = event that the die shows a 6, and B = event that a head comes up. <br> Then, `A = {(H, 6), (T, 6)}` <br> and `B={(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6)}`. <br> Then, `P(A//B)=(n(A nn B))/(n(B))=1/6`.


What is the probability of getting tail side on coin and a 6 on a dice if a dice is rolled and a coin is tossed together?

Contents:


Watch the video for three examples:

Probability: Dice Rolling Examples

Watch this video on YouTube.


Can’t see the video? Click here.

Need help with a homework question? Check out our tutoring page!


Dice roll probability: 6 Sided Dice Example

It’s very common to find questions about dice rolling in probability and statistics. You might be asked the probability of rolling a variety of results for a 6 Sided Dice: five and a seven, a double twelve, or a double-six. While you *could* technically use a formula or two (like a combinations formula), you really have to understand each number that goes into the formula; and that’s not always simple. By far the easiest (visual) way to solve these types of problems (ones that involve finding the probability of rolling a certain combination or set of numbers) is by writing out a sample space.

Dice Roll Probability for 6 Sided Dice: Sample Spaces

A sample space is just the set of all possible results. In simple terms, you have to figure out every possibility for what might happen. With dice rolling, your sample space is going to be every possible dice roll.


Example question: What is the probability of rolling a 4 or 7 for two 6 sided dice?

In order to know what the odds are of rolling a 4 or a 7 from a set of two dice, you first need to find out all the possible combinations. You could roll a double one [1][1], or a one and a two [1][2]. In fact, there are 36 possible combinations.

Dice Rolling Probability: Steps

Step 1: Write out your sample space (i.e. all of the possible results). For two dice,  the 36 different possibilities are:

[1][1], [1][2], [1][3], [1][4], [1][5], [1][6], [2][1], [2][2], [2][3], [2][4], [2][5], [2][6], [3][1], [3][2], [3][3], [3][4], [3][5], [3][6], [4][1], [4][2], [4][3], [4][4], [4][5], [4][6], [5][1], [5][2], [5][3], [5][4], [5][5], [5][6],

[6][1], [6][2], [6][3], [6][4], [6][5], [6][6].

Step 2: Look at your sample space and find how many add up to 4 or 7 (because we’re looking for the probability of rolling one of those numbers). The rolls that add up to 4 or 7 are in bold:


[1][1], [1][2], [1][3], [1][4], [1][5], [1][6],
[2][1], [2][2], [2][3], [2][4],[2][5], [2][6],
[3][1], [3][2], [3][3], [3][4], [3][5], [3][6],
[4][1], [4][2], [4][3], [4][4], [4][5], [4][6],
[5][1], [5][2], [5][3], [5][4], [5][5], [5][6],
[6][1],
[6][2], [6][3], [6][4], [6][5], [6][6].

There are 9 possible combinations.

Step 3: Take the answer from step 2, and divide it by the size of your total sample space from step 1. What I mean by the “size of your sample space” is just all of the possible combinations you listed. In this case, Step 1 had 36 possibilities, so:

9 / 36 = .25

You’re done!
Back to top

Two (6-sided) dice roll probability table

The following table shows the probabilities for rolling a certain number with a two-dice roll. If you want the probabilities of rolling a set of numbers (e.g. a 4 and 7, or 5 and 6), add the probabilities from the table together. For example, if you wanted to know the probability of rolling a 4, or a 7:
3/36 + 6/36 = 9/36.

Roll a… Probability
2 1/36 (2.778%)
3 2/36 (5.556%)
4 3/36 (8.333%)
5 4/36 (11.111%)
6 5/36 (13.889%)
7 6/36 (16.667%)
8 5/36 (13.889%)
9 4/36 (11.111%)
10 3/36 (8.333%)
11 2/36 (5.556%)
12 1/36 (2.778%)

Probability of rolling a certain number or less for two 6-sided dice.

Roll a… Probability
2 1/36 (2.778%)
3 3/36 (8.333%)
4 6/36 (16.667%)
5 10/36 (27.778%)
6 15/36 (41.667%)
7 21/36 (58.333%)
8 26/36 (72.222%)
9 30/36 (83.333%)
10 33/36 (91.667%)
11 35/36 (97.222%)
12 36/36 (100%)

Dice Roll Probability Tables

Contents:
1. Probability of a certain number (e.g. roll a 5).
2. Probability of rolling a certain number or less (e.g. roll a 5 or less).
3. Probability of rolling less than a certain number (e.g. roll less than a 5).
4. Probability of rolling a certain number or more (e.g. roll a 5 or more).
5. Probability of rolling more than a certain number (e.g. roll more than a 5).

Probability of a certain number with a Single Die.

Roll a… Probability
1 1/6 (16.667%)
2 1/6 (16.667%)
3 1/6 (16.667%)
4 1/6 (16.667%)
5 1/6 (16.667%)
6 1/6 (16.667%)

Probability of rolling a certain number or less with one die

.

Roll a…or less Probability
1 1/6 (16.667%)
2 2/6 (33.333%)
3 3/6 (50.000%)
4 4/6 (66.667%)
5 5/6 (83.333%)
6 6/6 (100%)

Probability of rolling less than certain number with one die

.


Roll less than a… Probability
1 0/6 (0%)
2 1/6 (16.667%)
3 2/6 (33.33%)
4 3/6 (50%)
5 4/6 (66.667%)
6 5/6 (83.33%)

Probability of rolling a certain number or more.

Roll a…or more Probability
1 6/6(100%)
2 5/6 (83.333%)
3 4/6 (66.667%)
4 3/6 (50%)
5 2/6 (33.333%)
6 1/6 (16.667%)

Probability of rolling more than a certain number (e.g. roll more than a 5).

Roll more than a… Probability
1 5/6(83.33%)
2 4/6 (66.67%)
3 3/6 (50%)
4 4/6 (66.667%)
5 1/6 (66.67%)
6 0/6 (0%)

Back to top

Like the explanation? Check out our Practically Cheating Statistics Handbook for hundreds more solved problems.

Visit out our statistics YouTube channel for hundreds of probability and statistics help videos!

References

Dodge, Y. (2008). The Concise Encyclopedia of Statistics. Springer.
Gonick, L. (1993). The Cartoon Guide to Statistics. HarperPerennial.
Salkind, N. (2016). Statistics for People Who (Think They) Hate Statistics: Using Microsoft Excel 4th Edition.

---------------------------------------------------------------------------

Need help with a homework or test question? With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!

Comments? Need to post a correction? Please Contact Us.