What is a clinical assessment finding that may indicate significant respiratory distress in a Paediatric patient?

Respiratory diseases are common in pediatrics, and providers need to have an in-depth knowledge of the presentation, diagnostic approach, and therapeutic options to optimize outcomes.

— Ann Dietrich, MD, FAAP, FACEP, Editor

Respiratory illness is the most common presenting complaint for pediatric emergency department (ED) visits.1,2 Overall, respiratory illness accounts for more than 9 million annual visits to the ED in children aged 0 to 17 years.1 Together, pneumonia, asthma, and bronchiolitis account for approximately 11% of annual pediatric ED visits and 25% of all pediatric hospital admissions.1 Although the majority of children will recover uneventfully, some progress to respiratory distress and a minority to respiratory failure. It is imperative that emergency physicians caring for children understand how to recognize and treat respiratory deterioration expediently.

This article describes a general approach to pediatric patients in respiratory distress and reviews new options in noninvasive airway management. The authors discuss specific disease processes of the upper and lower airway, including the epidemiology, clinical presentation, diagnosis, treatment, and disposition. After reading this article, providers should be able to expediently recognize respiratory distress in a pediatric patient, start initial treatment, develop a differential diagnosis, and treat patients in urgent and emergent settings. The article also discusses special patient populations, specifically patients with cystic fibrosis and neuromuscular diseases. Traumatic causes of respiratory distress and management of respiratory failure are outside the scope of this article.

Respiratory failure is the most common cause of cardiopulmonary arrest in the pediatric population; therefore, it is important for emergency providers to recognize respiratory distress quickly in children of all ages and intervene aggressively to prevent respiratory failure. The initial approach to the pediatric patient in respiratory distress consists of three major components: general assessment of the child, recognition of respiratory distress, and intervention.

The Advanced Pediatric Life Support (APLS) Pediatric Assessment Triangle is a well-known, easy-to-apply, standardized rapid assessment tool for the evaluation of infants and children.3 The Pediatric Assessment Triangle uses appearance, work of breathing, and circulation to quickly gauge the severity of illness and identify the underlying physiologic disturbance. (See Figure 1.) Although it can be used to identify a variety of physiologic disturbances, this article will focus on its use for respiratory distress. Early respiratory distress presents with a normal appearance, abnormal work of breathing, and normal circulation to the skin. As distress progresses, there is a more pronounced work of breathing and inability to compensate. Respiratory failure is characterized by abnormal appearance, abnormal work of breathing, and normal to abnormal circulation to the skin. Patients in full cardiorespiratory failure will present with abnormal general appearance, abnormal work of breathing, and abnormal circulation. Using the Pediatric Assessment Triangle, ED providers quickly can determine what type of intervention is needed and how rapidly it needs to occur. (See Figure 2.) Children in mild respiratory distress may need only supplemental oxygen. Children in moderate distress may require high-flow nasal cannula oxygen to avert a further respiratory deterioration.

What is a clinical assessment finding that may indicate significant respiratory distress in a Paediatric patient?

Adapted from: Dieckmann RA, Brownstein D, Gausche-Hill M. The pedatric assessment triangle: A novel approach for the rapid evaluation of children. Pediatr Emerg Care 2010;26:312-315.

What is a clinical assessment finding that may indicate significant respiratory distress in a Paediatric patient?

Source: Author created.

The pediatric respiratory exam should begin with a general assessment of the child’s work of breathing. Children in distress will use accessory muscles to generate higher negative pleural pressures to overcome airway obstruction. Respiratory distress commonly is graded by the level of severity. For example, mild distress involves tachypnea and shortness of breath, which can progress to subcostal retractions and nasal flaring, which are present in moderate distress. Supraclavicular tugging and head bobbing are present with severe distress. In some cases of severe respiratory distress, the entire sternum may retract, which is referred to as paradoxical breathing.

Providers also may witness pediatric patients with respiratory distress assuming a position of maximal respiratory comfort. For example, tripod positioning enhances the full use of the thoracoabdominal muscles to ease work of breathing. This occurs when children position themselves in an upright position while leaning over to support the upper body with their arms placed on either the thighs or the bed. It is the final stage of recruitment of the accessory muscles of respiration before respiratory failure.

While observing the level of respiratory distress, ED providers also should be aware of the patient’s vital signs — especially the respiratory rate, heart rate, and oxygen saturation and use age-specific vital signs. (See Tables 1 and 2.) Most commonly, tachypnea is the first sign of respiratory distress. It can indicate obstruction or inflammation anywhere in the respiratory tract, anxiety, metabolic acidosis, cardiac disease, or even the onset of fever. Apnea and bradypnea in children usually is the result of respiratory muscle fatigue. Tachycardia due to increased sympathetic tone is common in children with respiratory distress and also can manifest in children with dehydration and/or fever. Bradycardia in children with respiratory distress is a late finding and an ominous precursor of cardiorespiratory arrest.

< 1 year

30-60

1 to 3 years

24-40

4 to 5 years

22-34

6 to 12 years

18-30

13 to 18 years

12-16

Adapted from: American Heart Association. Systemic approach to the seriously ill or injured child. Pediatric Advanced Life Support — Provider Manual. Ashcraft J, ed. Dallas. 2011; 13.

Newborn to 3 months

85-205

80-160

3 months to 2 years

100-190

75-160

2 years to 10 years

60-140

60-90

> 10 years

60-100

50-90

Adapted from: American Heart Association. Systematic approach to the seriously ill or injured child. Pediatric Advanced Life Support — Provider Manual. Ashcraft J, ed. Dallas. 2011; 13.

The provider should be able to assess a child’s respiratory status with the Pediatric Assessment Triangle within the first minute of observation. If the child is in respiratory distress and hypoxic, he or she should be given supplemental oxygen. If the child has a ventilation problem, adjuncts such as high-flow nasal cannula, continuous positive pressure ventilation (CPAP), and bi-level positive pressure ventilation (BiPAP) have been demonstrated to avert respiratory failure.1,4-9 Primary interventions, such as providing supplemental oxygen or noninvasive ventilation (heated humidified high-flow nasal cannula, CPAP, or BiPAP), should be given to patients with significant oxygenation or ventilation deficits.

After initial intervention, a secondary assessment including a detailed history and exam should be performed for patients in respiratory distress or respiratory failure. Disease-specific diagnostic and management interventions should follow.

Sounds coming from the airway may assist the provider in localizing the affected part of the airway. Findings from a complete respiratory exam allow the practitioner to localize the origin of respiratory distress and initiate appropriate treatment.10 (See Table 3.)

Tachypnea

Rapid rate of breathing above normal parameters for age

Often the first sign of respiratory distress

Nonspecific localization

  • Can be due to obstruction of the upper or lower airway
  • Can also be due to anxiety

Bradypnea

Slow rate of breathing below the normal parameters for age

Nonspecific localization

  • Slow and large tidal breath volumes can indicate central control abnormalities
  • Can be used as a mechanism to minimize the turbulence and resistance in significant extrathoracic airway obstruction
  • Also, a nonspecific sign of fatigue

Changes in vocal pitch

Obstruction in different locations of the airway can lead to changes in the pitch of voice

Upper respiratory tract

  • Muffled voice: Indicates a supraglottic lesion
  • Weak/hoarse voice: Indicates a glottic lesion
  • Normal voice/brassy cough: Indicates a subglottic lesion

Cough

A protective reflex used to clear the airway of phlegm or irritants

Nonspecific localization

Drooling

May imply pooled secretions and a partially obstructed airway

Usually indicates significant upper airway obstruction

Upper respiratory tract

Nasal flaring

The outward and inward flaring of the nares with inspiration

Implies general respiratory distress

Nonspecific localization

Retractions

Use of accessory muscles to facilitate breathing

Upper or lower respiratory tract

Grunting

A sound produced by exhalation against a closed glottis; an attempt to increase functional residual capacity and lung volume to avoid alveolar collapse; used by children to provide increased end-expiratory pressure and keep the end airways open

Lower respiratory tract

Stridor

Noisy breathing that occurs due to obstructed airflow through a narrowed airway

Upper respiratory tract

  • Inspiratory stridor: Indicates obstruction above the vocal cords
  • Expiratory stridor: Indicates an obstruction in the trachea
  • Biphasic stridor: Indicates narrowing of the subglottis

Adapted from: Weiner DL. Acute respiratory distress in children: Emergency evaluation and initial stabilization. In: UpToDate. Waltham, MA: UpToDate. Available at: https://www.uptodate.com/contents/acute-respiratory-distress-in-children-emergency-evaluation-and-initial-stabilization. Accessed Feb. 23, 2018.

Stertor

A sound that is characterized by heavy snoring or gasping. Caused by partial obstruction of the airway above the level of the larynx and by vibrations of the tissue of the nasopharynx, pharynx, or soft palate

Upper respiratory tract

Perioral cyanosis

A bluish discoloration of the lips due to an increased concentration of deoxygenated hemoglobin in the capillary bed

Nonspecific localization

  • General indicator of severe respiratory distress

Wheezing

High-pitched whistling sound that occurs in inflamed lower airways while breathing. Can occur during inspiration and expiration

Lower respiratory tract

Crackles (rales)

Brief discontinuous popping noises transmitted from the alveoli during inspiration. Crackles are caused by the “popping open” of small airways that are collapsed by fluid, exudate, or lack of aeration during expiration

Lower respiratory tract

Pleural rub

Audible sound produced when pleural layers of lung are inflamed and have lost their lubrication; occurs during inspiration and expiration

Nonspecific localization

Prolonged phases of breathing

Normally inspiration and expiration should occur in equal duration

Upper or lower respiratory tract

  • Prolonged inspiratory phase: Supraglottic obstruction
  • Prolonged expiratory phase: Lower respiratory tract obstruction

Tripod position

A wide-based position established while sitting by leaning over to support the upper body with the arms placed on either side of the thighs. Maximized recruitment of the accessory muscles and is a sign of impending respiratory failure

Nonspecific localization

Adapted from: Weiner DL. Acute respiratory distress in children: Emergency evaluation and initial stabilization. In: UpToDate. Waltham, MA: UpToDate. Available at: https://www.uptodate.com/contents/acute-respiratory-distress-in-children-emergency-evaluation-and-initial-stabilization. Accessed Feb. 23, 2018.

Stridor, stertor, and changes in vocal pitch (hoarseness, muffled voice, or a brassy cough) indicate an upper airway process or obstruction. Stridor can be inspiratory, expiratory, or biphasic, which can indicate the location of the obstruction. Inspiratory stridor generally is a sign of obstruction above the vocal cords, while expiratory stridor is an indication of obstruction in the trachea. Biphasic stridor is an indication of subglottic narrowing. Stertor is a sound characterized by heavy snoring or gasping and can localize obstruction above the larynx. It is caused by vibrations of the tissue in the naso-
pharynx, pharynx, or soft palate. A child who presents with significant drooling may have a substantial upper airway obstruction due to pooled secretions and a partially obstructed airway. Similarly, a prolonged inspiratory phase may indicate a supraglottic obstruction.

Signs of lower airway obstruction include grunting, wheezing, and crackles. Grunting is a low-pitched sound that is produced with exhalation against a closed glottis and is used to increase end-expiratory pressure and keep the alveoli open. Wheezing is a high-pitched musical sound that occurs in inflamed lower airways and can occur during both phases of breathing. Although common in patients with asthma, it does not always indicate this diagnosis. Crackles are caused by the abrupt opening of small lower airways that are obstructed by fluid, exudate, or lack of aeration during expiration. A prolonged expiratory phase is indicative of a lower airway obstruction.

Oxygen can be provided effectively to the majority of pediatric patients presenting in respiratory distress with the use of a nasal cannula or face mask. The nasal cannula is a well-established mode of delivery of oxygen therapy, but the amount of oxygen that can be delivered traditionally has been limited by poor tolerance of flow rates > 2 L/min in children.7 The flow rate generally is 0.5 to 1 L/min for infants and 1 to 2 L/min for older children to prevent drying and discomfort of the nasal mucosa and other mucosal complications.5,11 For older children, oxygen is best given by face mask.

Heated humidified high-flow nasal cannula is a noninvasive form of respiratory support that provides heated and humidified oxygen to patients via a nasal cannula interface, which prevents drying and discomfort of the nasal mucosa.12 Compared to nasal cannula, heated humidified high-flow nasal cannula allows for adjustments to flow independent of FiO2. For example, a patient can be on 10 L of nasal cannula flow.

There is no universally accepted definition of the minimum flow rate that defines “high” flow, and the optimal maximal flow for heated humidified high-flow nasal cannula is unknown.5,12 Some studies report using age-based protocols, such as 2 L/min for patients younger than 6 months, 4 L/min for 6 to 18 months, and 8 to 12 L/min for infants and 20 to 30 L/min for children. Other studies have used weight-based dosing, such as 1 to 2 L/kg/min.4,12 Although heated humidified high-flow nasal cannula provides some positive airway pressure based on flow rate, the pressure is variable and difficult to predict.9

Heated humidified high-flow nasal cannula most commonly is studied as an alternative form of respiratory support in which continuous positive airway pressure (CPAP) is indicated.9 Outside of its role in infants with bronchiolitis, there is relatively limited evidence for heated humidified high-flow nasal cannula therapy in children.7,13 A few studies have suggested that heated humidified high-flow nasal cannula may be more efficacious than nasal cannula oxygen and similarly efficacious as CPAP for providing noninvasive ventilator support.12 The use of heated humidified high-flow nasal cannula and other forms of noninvasive positive pressure ventilation have decreased the need for intubation and mechanical ventilation in the pediatric population.1,12 A recent large retrospective study of pediatric patients admitted to a tertiary care hospital ED for acute respiratory distress showed an 83% reduction in the frequency of intubations after the implementation of a pediatric heated humidified high-flow nasal cannula usage guideline.1

Although heated humidified high-flow nasal cannula reduced the need for endotracheal intubation in the ED, there was not a significant change in mortality or median pediatric intensive care unit (PICU) length of stay after the introduction of a high-flow nasal cannula pathway.9

Noninvasive ventilation in the form of CPAP is another alternative to endotracheal intubation for pediatric patients presenting in severe respiratory distress. CPAP is a form of noninvasive positive pressure ventilation that applies continuous end-expiratory pressure to stent open the alveoli to recruit more surface area for ventilation. The CPAP apparatus is available as a nasal plug, a nasal mask that covers the nares, a face mask that covers both the nares and the mouth, or a complete face mask that covers the entire face. When CPAP is used, the recommendation is to start low pressures (5 cmH2O) and increase in increments of 1 cmH2O as tolerated by the patient for goals of an exhaled tidal volume > 7 mL/kg, a respiratory rate of normal for given age, and oxygen saturation > 90%.14

The initiation of both CPAP and bi-level positive airway pressure (BiPAP) have been studied in adult populations in the ED; however, there is a paucity of studies in the pediatric population. Their application in pediatric emergency settings is difficult because of the limited compliance and cooperation of infants or children to tolerate a nasal plug, nasal mask, face mask, or complete face mask for CPAP delivery.4 CPAP usually is tolerated only with some form of sedation, which can compromise respiratory drive. However, the introduction of dexmedetomidine, an α2-adrenergic receptor agonist that causes sedation without any respiratory depression, has provided an alternative to traditional sedation. The use of dexmedetomidine has been limited to the PICU.4

Large studies comparing heated humidified high-flow nasal cannula and CPAP are scarce. A small retrospective study comparing heated humidified high-flow nasal cannula and nasal CPAP in infants with acute bronchiolitis who were admitted to the PICU showed that there was no significant difference between groups for respiratory parameters (respiratory rate, PCO2, FiO2, and duration of oxygen support) or length of stay in the PICU, suggesting that heated humidified high-flow nasal cannula is as efficient as nasal CPAP in improving respiratory distress in infants with acute bronchiolitis.15

BiPAP is considered the strongest form of noninvasive respiratory support. It provides both an inspiratory peak airway pressure (IPAP) and an expiratory peak airway pressure (EPAP) for each breath. The level of pressure support in BiPAP is equivalent to the difference between the IPAP and EPAP. With BiPAP, the IPAP setting may range from 4 to 24 cmH2O, while the EPAP setting may vary from 2 to 20 cmH2O. Typical initial settings for BiPAP are 8 to 10 cmH2O IPAP and 2 to 4 cmH2O EPAP.14 The mechanism of cycling between the two pressures reduces the stress on the diaphragm and accessory muscles by increasing the tidal volume and minute ventilation, opening obstructed alveoli, and decreasing the frequency of occlusive apnea and hypopnea.16

Traditionally, BiPAP has been used for pediatric patients with neuromuscular disorders, chronic lung disease, and obstructive airways. It has been limited to children weighing > 20 kg because of the concern that small children are incapable of initiating supported breaths while on BiPAP; however, recent studies have shown it to be a beneficial treatment modality for acute severe asthma exacerbations in children of all weights.16

The next section will focus on the presentation and management of need-to-know pediatric respiratory illnesses encountered in the ED. (See Table 4.)

Upper Airway

  • Anaphylaxis
  • Foreign body
  • Trauma
    • Blunt/penetrating neck injury
    • Airway burns (thermal and chemical)
  • Laryngospasm
  • Epiglottitis
  • Croup
  • Mediastinal mass
  • Retropharyngeal abscess/peritonsillar abscess

Lower Airway

  • Asthma
  • Tension pneumothorax
  • Pulmonary embolism (rare in children)
  • Pneumonia

Cardiac

  • Cardiac tamponade
  • Acute decompensated heart failure

Central Nervous System

  • Altered mental status
  • Neuromuscular weakness (multiple etiologies)

Metabolic

  • Diabetic ketoacidosis
  • Toxic ingestion

Adapted from: Weiner DL. Acute respiratory distress in children: Emergency evaluation and initial stabilization. In: UpToDate. Waltham, MA: UpToDate. Available at: https://www.uptodate.com/contents/acute-respiratory-distress-in-children-emergency-evaluation-and-initial-stabilization. Accessed Feb. 23, 2018.

Background. Foreign body aspiration is the sixth most common cause of accidental death in children in the United States, with most cases occurring in preschool aged children.17 A foreign body in the airway can present with nonspecific symptoms such as coughing, wheezing, fever, dyspnea, or hypoxia. In severe cases, it can cause complete obstruction leading to death. The most common anatomic location for a foreign body to lodge is the bronchi (80-90%), followed by the trachea (3-12%) and the larynx (2-12%).18

Presentation. Physical findings are variable depending on the size, location, and duration that the object has been in the airway. Children with complete obstruction of the larynx generally present in respiratory failure or cardiopulmonary arrest requiring a surgical airway or a rapid intubation with a small sized endotracheal tube and foreign body removal in the operating room.19 Partial laryngeal obstruction can present as dysphonia, hoarseness, a cough, or stridor.20 A tracheal foreign body can present with dysphonia, dysphagia, dry cough, and biphasic stridor.20 A foreign body in the lower airway can present with asymmetrical breath sounds, wheezing, and tachypnea. Fever and pneumonia may be the presenting symptoms in cases in which the foreign body is undetected for a prolonged amount of time.

Diagnosis. If a foreign body aspiration is suspected in an otherwise stable patient, ED providers should proceed with the appropriate diagnostic workup and coordinate removal of the object. If possible, the plan for diagnostic workup should be made in conjunction with an otolaryngologist. Plain films are very sensitive for directly showing radiopaque foreign bodies, including all metals except aluminum, glass, and most animal bones.21 Approximately 90% of foreign bodies are not radiopaque and include plastic objects, wooden objects, and most fish bones. Plain films may show indirect signs of air trapping, atelectasis, and consolidation.21 As many as 80% of children with laryngotracheal foreign bodies and 30-50% of children with bronchial foreign bodies have normal chest radiographs; therefore, a normal appearing radiograph does not exclude foreign body.1,21 In cases that are highly suggestive of a foreign body aspiration with a normal chest radiograph, a rigid bronchoscopy should be considered. Prompt bronchoscopy is essential, as a delay of more than 24 hours from presentation increases the incidence of complications, such as pneumonia.21

CT also may be considered in the diagnostic workup of a foreign body aspiration, as it is a superior imaging study when visualizing non-radiopaque foreign bodies that are undetectable on plain films and can clearly show different airway pathologies that may mimic foreign body aspiration. ED providers should obtain CT only in consultation with an otolaryngologist, considering the severity of symptoms, chronicity, and the radiation exposure.

Management. Rigid bronchoscopy performed by an otolaryngologist is the gold standard for removal of a foreign body in the airway.19 Immediate intervention with direct visualization or rigid bronchoscopic removal of the foreign body is warranted when a child presents in severe respiratory distress. Immediate rigid bronchoscopy also is warranted for patients presenting after a witnessed aspiration event regardless of symptoms, or for patients with a choking episode or suggestive radiographic findings.22

Disposition/Prognosis. The longer that a foreign body is retained in the airway, the higher the likelihood of complications, such as secondary pneumonia, bronchiectasis, and atelectasis. Prompt removal is critical for a favorable outcome. No pediatric patient with a confirmed foreign body aspiration or with a high suspicion for a foreign body aspiration should be discharged from the ED. After completing a rigid bronchoscopy under general anesthesia, disposition should be determined by the subspecialty service. For patients with some suspicion of a foreign body but no definitive physical examination or imaging findings, observation in the ED or inpatient service for 12 to 24 hours is appropriate to watch for changes in respiratory status or evolving radiologic findings.20

Background. Anaphylaxis is a severe, potentially life-threatening allergic reaction. The incidence and prevalence of anaphylaxis is higher than previously thought. Publications from the past five years reveal an incidence of between 50 and 112 episodes per 100,000 person-years, with an estimated prevalence of 0.3-5.1%. Figures are higher in children, particularly children 0 to 4 years of age. The frequency of admissions due to anaphylaxis has increased (five- to seven-fold in the last 10 to 15 years). 23 An anaphylactic reaction can occur within seconds to minutes of exposure to an allergen.

Presentation. There is no universal agreement on the definition and diagnosis of anaphylaxis. In 2005 and 2006, the National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network developed formal guidelines for the diagnosis and treatment of anaphylaxis.24,25 (See Table 5.) Generally, anaphylaxis will involve a combination of skin or mucosal tissue, reduced blood pressure, gastrointestinal symptoms, and/or respiratory compromise. It can cause significant airway edema manifesting as dyspnea, wheezing, stridor, or hypoxemia, which can progress rapidly to cardiorespiratory arrest.

Anaphylaxis is highly likely when any one of the following three criteria are fulfilled:

Acute onset of an illness (minutes to several hours) with involvement of the skin, mucosal tissue, or both (e.g., generalized hives, pruritis or flushing, swollen lips-tongue-uvula) and at least one of the following:

Respiratory compromise (e.g., dyspnea, wheeze/bronchospasm, stridor, reduced peak expiratory flow, hypoxemia)

Reduced blood pressure or associated symptoms of end-organ dysfunction (e.g., hypotonia or collapse, syncope, incontinence)

Two or more of the following that occur rapidly after exposure to a likely allergen for that patient (minutes to several hours):

Involvement of the skin or mucosal tissue (e.g., generalized hives, pruritis or flushing, swollen lips-tongue-uvula)

Respiratory compromise (e.g., dyspnea, wheeze/bronchospasm, stridor, reduced peak expiratory flow, hypoxemia)

Reduced blood pressure or associated symptoms (e.g., hypotonia or collapse, syncope, incontinence)

Persistent gastrointestinal symptoms (e.g., cramping abdominal pain, vomiting)

Reduced blood pressure after exposure to a known allergen for that patient (minutes to several hours):

Infants and children: low systolic blood pressure (age-specific) or
> 30% decrease in systolic blood pressure

Adults: systolic blood pressure < 90 mmHg or > 30% decrease from patient’s baseline

Adapted from: Simons FE. Anaphylaxis. J Allergy Clin Immunol 2010;125:S162.

Diagnosis. The diagnosis of anaphylaxis is made by a thorough history and clinical exam.

Management. Management consists of administration of intramuscular epinephrine as well as fluids, antihistamines, and steroids. In addition to epinephrine, nebulized albuterol can be used as an adjunctive therapy for symptoms of bronchospasm.26

Disposition/Prognosis. There is no consensus for the duration of observation time following an anaphylactic episode. According to the most recent practice parameter, patients with moderate to severe anaphylaxis should be observed for a minimum of four to eight hours. A longer observation period with possible admission should be considered when: 1) risk factors for more severe anaphylaxis (e.g., history of severe asthma) are present; 2) the allergens have been ingested; 3) more than one dose of epinephrine is required; 4) pharyngeal edema is present; and 5) severe or prolonged symptoms (e.g., prolonged wheezing or hypotension) are noted.26 Patients presenting with an anaphylactic episode should be prescribed an epinephrine auto-injector and trained on its use.

Background. Croup is the most common infectious cause of upper airway obstruction in children.19 Usually, it is caused by viruses, most commonly parainfluenza virus and rhinovirus. Other viral causes include enterovirus, respiratory syncytial virus, influenza virus, and human bocavirus.27

Presentation. Croup usually presents with a viral prodrome of fever and cough followed by respiratory distress and stridor in children ages 6 months to 6 years.

Diagnosis. The diagnosis of croup is clinical and is based on history and physical exam findings of a barky cough and stridor. Although stridor is a strong indicator of croup, it also is important to consider other potential diagnoses that present with stridor, including structural abnormalities such as vascular rings and laryngotracheomalacia.

Management. Croup can be managed with supportive therapy at home in most cases. Children presenting to the ED with audible stridor at rest should receive nebulized epinephrine and systemic steroids. A single dose of dexamethasone 0.15 to 0.6 mg/kg (max 10 mg) is sufficient and is indicated in all children with viral croup irrespective of severity.27 If patients have persistent stridor at rest following the administration of nebulized epinephrine and systemic steroids, they require additional doses of nebulized epinephrine and hospital admission for observation.

Disposition/Prognosis. Observation for three to four hours following the administration of nebulized epinephrine is recommended prior to discharge from the ED because croup symptoms may recur because of the limited duration of action of the medication.27 Other studies, both retrospective and prospective, suggest that patients treated with adrenaline may be safely discharged if their symptoms do not recur for at least two to three hours after treatment.28,29 Patients who remain stable without any return of stridor at rest may be discharged from the ED. Patients do not require any additional medications for home use at discharge. Patients with croup who have lower oxygen saturations on presentation or past history of croup or intubation are more likely to have a prolonged or complicated hospital course.30

Background. Epiglottitis is defined by supraglottic inflammation secondary to a bacterial infection. In an eight-year retrospective (1998–2006) review of epiglottitis admissions, Shah et al found that epiglottitis continues to be a significant entity, with two uniquely vulnerable populations: infants (< 1 year of age) and the elderly (> 85 years of age). The pediatric cohort of patients (patients < 18 years of age) showed 34.4% were < 1 year of age, which had increased in frequency, representing 26.8% of pediatric patients in 1998 and 41.1% in 2006.31

Epiglottitis usually presents with high fever followed by rapid respiratory deterioration within a few hours. Historically, it was mostly commonly caused by Haemophilus influenzae type b; however, with vaccination against H. influenzae type b, it is now more commonly caused by Streptococcus pyogenes and Staphylococcus aureus.27

Presentation. Classically, children will present in severe respiratory distress with tripod positioning. Other characteristic presenting features are drooling, dysphagia, dysphonia, and dyspnea.

Diagnosis. Radiography may be helpful in evaluation but should be obtained only if the patient is not critically ill and it does not distress the patient. A portable lateral neck radiograph that visualizes an edematous epiglottis (the classic “thumb print” sign) may be helpful in diagnosis; however, absence of this sign does not rule out the diagnosis. The gold standard for diagnosis is direct visualization through laryngoscopy, which should be attempted only by a highly skilled professional.

Management. Management is established with rapid stabilization of the airway, often through endotracheal intubation. ED providers must take extra care not to destabilize the patient while providing treatment. Early consultation of anesthesiology and otolaryngology should be considered.

Disposition/Prognosis. Antibiotics should be initiated as early as possible. Patients with epiglottitis should be admitted to the hospital for antibiotic administration and close monitoring of their airway and intervention as needed.

Background. Peritonsillar abscess is the most common superficial neck infection. It is defined as a collection of pus located between the capsule of the palatine tonsil and the pharyngeal muscles.

Presentation. Peritonsillar abscess presents in older children and adolescents with acute tonsillitis, high fever, severe throat pain, and dysphagia.

Diagnosis. The diagnosis is clinical and may reveal trismus, foul-smelling breath, cervical adenopathy, and an edematous uvula pushed to one side. Peritonsillar abscess usually causes mild respiratory distress, which typically does not progress to respiratory failure.

Treatment. Treatment is achieved by administration of antibiotics and drainage.

Disposition/Prognosis. Children presenting with a peritonsillar abscess require needle aspiration or incision and drainage, which can be performed by an experienced provider in the ED. Younger children may benefit from the procedure being completed in the operating room.

Background. Retropharyngeal abscess usually presents in patients aged 6 months to 6 years with a median age range of 3 to 5 years. The peak incidence occurs before the lymph nodes in this potential space atrophy, making abscess formation much less common with increasing age. They usually are polymicrobial infections; however, the predominant bacterial species are S. pyogenes, S. aureus, and respiratory anaerobes.

Presentation. Patients usually present with a high fever, sore throat, inspiratory stridor, and difficulty swallowing. Often, torticollis patients will hyperextend their necks to decrease their airway obstruction.

Diagnosis. The diagnosis of a retropharyngeal abscess is made with a lateral neck radiograph or a computed tomography (CT) scan, which will reveal airway narrowing and widening of the retropharyngeal space. Imaging often is done in con­junction with otolaryngology because of the risk of respiratory decompensation.

Management. Management involves maneuvers to maintain airway patency, timely administration of antibiotics, and drainage of the abscess by otolaryngology.

Disposition/Prognosis. Children with a retropharyngeal infection should be hospitalized and managed in conjunction with an otolaryngologist.

Background. Although rare, mediastinal masses are absolute airway emergencies. A recent study investigating 120 cases of mediastinal masses showed that the most common etiology was a malignant neurogenic tumor followed by lymphoma.32 They can present in a variety of ways, most commonly with respiratory symptoms. Patients are very tenuous and their airways can be difficult to manage.

Presentation. Most commonly patients will present with dyspnea, wheezing, or stridor depending on the degree of tracheal compression. Other symptoms may include fatigue, fever, back pain, or, in some cases, superior vena cava syndrome. Up to one-third of mediastinal masses in children are asymptomatic.32 Most institutions have protocols involving rapid involvement of anesthesia to secure the airway and a PICU admission.

Diagnosis. Diagnosis is achieved through a screening chest radiograph or chest CT scan. Diagnostic workup should be coordinated carefully in conjunction with anesthesia, otolaryngology, and possibly oncology.

Treatment. Airway management should be performed in the ICU in consultation with anesthesia, otolaryngology, and oncology. As most mediastinal masses are oncologic in nature, management may involve timely administration of systemic steroids and initiation of chemotherapy and/or radiation. If the patient is stable, treatment is delayed until definitive oncologic diagnosis and oncologic staging are completed.

Disposition/Prognosis. Most patients are admitted to a PICU.

Lower airway obstruction may occur at the level of the trachea, bronchi, or bronchioles. It is most commonly due to infectious processes, although asthma, congenital disease, and foreign body inhalation also are common culprits. Typical findings include wheezing and lung hyperinflation in addition to the general findings of respiratory distress.

Background. Bronchiolitis is a clinical diagnosis characterized by inflammation of the lower airways and increased mucous production in children younger than 2 years of age. Although bronchiolitis most typically is caused by respiratory syncytial virus, it can be caused by other viruses, including human rhinovirus, influenza, human metapneumovirus, and adenovirus.

Presentation. Usually children with bronchiolitis experience an onset of cold symptoms with worsening respiratory symptoms and respiratory distress by days 2 to 4 of illness. Patients with more severe illness will have increased work of breathing that may be accompanied by wheezing and intermittent crackles.

Diagnosis. Bronchiolitis is a clinical diagnosis. New American Academy of Pediatrics (AAP) guidelines for bronchiolitis do not recommend routine chest radiographs or trials of albuterol or epinephrine aerosols.33 If a chest radiograph is obtained, there is usually some degree of peribronchial thickening consistent with a viral process. (See Figure 3.)

Viral bronchiolitis presenting with cough in an 11-month-old girl. Chest radiographs demonstrate diffuse peribronchial thickening and mild hyperinflation, seen as flattening of the diaphragm and air anterior to the heart. This is better appreciated on the lateral view.

What is a clinical assessment finding that may indicate significant respiratory distress in a Paediatric patient?
What is a clinical assessment finding that may indicate significant respiratory distress in a Paediatric patient?

Images courtesy of N. Ewen Wang, MD.

Management. Management includes providing respiratory support in the form of oxygen via nasal cannula or, in some cases, noninvasive positive pressure ventilation through high-flow nasal cannula or CPAP. Patients who progress to respiratory failure may require intubation. The 2014 AAP guidelines state that clinicians should not administer albuterol (or salbutamol) to infants and children with a diagnosis of bronchiolitis (Evidence Quality: B; Recommendation Strength: Strong Recommendation). Clinicians should not administer epinephrine to infants and children with a diagnosis of bronchiolitis (Evidence Quality: B; Recommendation Strength: Strong Recommendation). Nebulized hypertonic saline should not be administered to infants with a diagnosis of bronchiolitis in the ED. (Evidence Quality: B; Recommendation Strength: Moderate Recommendation).33

Disposition/Prognosis. Patients presenting with increased work of breathing, hypoxia, or those with copious secretions requiring frequent suctioning may be admitted to the hospital for respiratory support. Younger patients also may require hospitalization for intravenous fluid resuscitation due to dehydration from inability to feed because of respiratory distress.

Background. Asthma is a chronic inflammatory process that affects the lower respiratory tract. Asthma is one of the most common causes of respiratory distress. It affects more than 6.2 million children in the United States younger than 18 years of age and accounted for 20 million ED visits in 2014.34 Although asthma and asthma-like symptoms (reactive airway disease) caused by bronchospasm are common in childhood, few patients diagnosed with childhood asthma have persistent symptoms into adulthood.35

Presentation. Typically, patients with an asthma exacerbation will present with shortness of breath or chest tightness, an audible wheeze on auscultation, and possibly hypoxia. Although a decreased oxygen saturation generally is a reliable indicator of worsening respiratory status, it can be misleading in patients with asthma because of ventilation and perfusion (V/Q) mismatching. This may be apparent after the initial administration of a bronchodilator. For example, patients with asthma may experience a further decline in their oxygen saturation after receiving albuterol, due to V/Q mismatch or intrapulmonary shunting, even though their overall clinical status is improving.36 However, this decline in oxygen saturation should be temporary. Persistent decline in oxygenation and further respiratory distress would indicate deteriorating respiratory status.

Management. Management consists of rapid administration of albuterol, an inhaled beta-agonist, ipratropium, and systemic steroids. Most institutions have developed treatment pathways specifically for asthma. Patients with severe asthma may require adjunct medications including intravenous magnesium. Other potential therapies include terbutaline and/or aminophylline, usually instituted in the PICU. Severe refractory asthma may warrant noninvasive positive pressure ventilation or endotracheal intubation. Recent studies have shown decreased need for endotracheal intubation and improved outcomes with use of noninvasive positive pressure support.7,16,37,38 (See Table 6.)

1. Albuterol, ipratropium, steroids

Order for all patients; give systemic corticosteroids in moderate or severe exacerbations or for patients who fail to respond promptly and completely to short-acting beta agonists; addition of inhaled ipratropium bromide in moderate to severe exacerbations

2. Continuous albuterol

0.5 to 1 mg/kg/hour

If < 20 kg, give 10 to 20 mg/hour 20 to 30 kg, give 10 to 30 mg/hour

> 30 kg, give 15 to 45 mg/hour