What condition most commonly triggers sporogenesis among endospore-forming bacteria?

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid or dikaryons and form through cell fusion.

Reproductive spores are generally the result of cell division, most commonly meiosis (e.g. in plant sporophytes). Sporic meiosis is needed to complete the sexual life cycle of the organisms using it.

In some cases, sporogenesis occurs via mitosis (e.g. in some fungi and algae). Mitotic sporogenesis is a form of asexual reproduction. Examples are the conidial fungi Aspergillus and Penicillium, for which mitospore formation appears to be the primary mode of reproduction. Other fungi, such as ascomycetes, utilize both mitotic and meiotic spores. The red alga Polysiphonia alternates between mitotic and meiotic sporogenesis and both processes are required to complete its complex reproductive life cycle.

In the case of dormant spores in eukaryotes, sporogenesis often occurs as a result of fertilization or karyogamy forming a diploid spore equivalent to a zygote. Therefore, zygospores are the result of sexual reproduction.

Reproduction via spores involves the spreading of the spores by water or air. Algae and some fungi (chytrids) often use motile zoospores that can swim to new locations before developing into sessile organisms. Airborne spores are obvious in fungi, for example when they are released from puffballs. Other fungi have more active spore dispersal mechanisms. For example, the fungus Pilobolus can shoot its sporangia towards light. Plant spores designed for dispersal are also referred to as diaspores. Plant spores are most obvious in the reproduction of ferns and mosses. However, they also exist in flowering plants where they develop hidden inside the flower. For example, the pollen grains of flowering plants develop out of microspores produced in the anthers.

Reproductive spores grow into multicellular haploid individuals or sporelings. In heterosporous organisms, two types of spores exist: microspores give rise to males and megaspores to females. In homosporous organisms, all spores look alike and grow into individuals carrying reproductive parts of both genders.

Sporogenesis occurs in reproductive structures termed sporangia. The process involves sporogenous cells (sporocytes, also called spore mother cells) undergoing cell division to give rise to spores.

In meiotic sporogenesis, a diploid spore mother cell within the sporangium undergoes meiosis, producing a tetrad of haploid spores. In organisms that are heterosporous, two types of spores occur: Microsporangia produce male microspores, and megasporangia produce female megaspores. In megasporogenesis, often three of the four spores degenerate after meiosis, whereas in microsporogenesis all four microspores survive.

In gymnosperms, such as conifers, microspores are produced through meiosis from microsporocytes in microstrobili or male cones. In flowering plants, microspores are produced in the anthers of flowers. Each anther contains four pollen sacs, which contain the microsporocytes. After meiosis, each microspore undergoes mitotic cell division, giving rise to multicellular pollen grains (six nuclei in gymnosperms, three nuclei in flowering plants).

Megasporogenesis occurs in megastrobili in conifers (for example a pine cone) and inside the ovule in the flowers of flowering plants. A megasporocyte inside a megasporangium or ovule undergoes meiosis, producing four megaspores. Only one is a functional megaspore whereas the others stay dysfunctional or degenerate. The megaspore undergoes several mitotic divisions to develop into a female gametophyte (for example the seven-cell/eight-nuclei embryo sac in flowering plants).

Mitospore formation

Some fungi and algae produce mitospores through mitotic cell division within a sporangium. In fungi, such mitospores are referred to as conidia.

Some algae, and fungi form resting spores made to survive unfavorable conditions. Typically, changes in the environment from favorable to unfavorable growing conditions will trigger a switch from asexual reproduction to sexual reproduction in these organisms. The resulting spores are protected through the formation of a thick cell wall and can withstand harsh conditions such as drought or extreme temperatures. Examples are chlamydospores, teliospores, zygospores, and myxospores. Similar survival structures produced in some bacteria are known as endospores.

Chlamydospore and teliospore formation

Chlamydospores are generally multicellular, asexual structures. Teliospores are a form of chlamydospore produced through the fusion of cells or hyphae where the nuclei of the fused cells stay separate. These nuclei undergo karyogamy and meiosis upon germination of the spore.

Zygospore, oospore and auxospore formation

Zygospores are formed in certain fungi (zygomycota, for example Rhizopus) and some algae (for example Chlamydomonas). The zygospore forms through the isogamic fusion of two cells (motile single cells in Chlamydomonas) or sexual conjugation between two hyphae (in zygomycota). Plasmogamy is followed by karyogamy, therefore zygospores are diploid (zygotes). They will undergo zygotic meiosis upon germinating.

In oomycetes, the zygote forms through the fertilization of an egg cell with a sperm nucleus and enters a resting stage as a diploid, thick-walled oospore. The germinating oospore undergoes mitosis and gives rise to diploid hyphae which reproduce asexually via mitotic zoospores as long as conditions are favorable.

In diatoms, fertilization gives rise to a zygote termed auxospore. Besides sexual reproduction and as a resting stage, the function of an auxospore is the restoration of the original cell size, as diatoms get progressively smaller during mitotic cell division. Auxospores divide by mitosis.

Endospore formation

The term sporogenesis can also refer to endospore formation in bacteria, which allows the cells to survive unfavorable conditions. Endospores are not reproductive structures and their formation does not require cell fusion or division. Instead, they form through the production of an encapsulating spore coat within the spore-forming cell.

There are many parts of the spore 'plant'. The case that holds all the spores is called a sporangium.

  • S.S. Mader (2007): Biology, 9th edition, McGraw Hill Companies, New York, ISBN 978-0-07-246463-4
  • P.H. Raven, R.F. Evert, S.E. Eichhorn (2005): Biology of Plants, 7th Edition, W.H. Freeman and Company Publishers, New York, ISBN 0-7167-1007-2

Retrieved from "https://en.wikipedia.org/w/index.php?title=Sporogenesis&oldid=1073243284"

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Microorganisms sense and adapt to changes in their environment. When favored nutrients are exhausted, some bacteria may become motile to seek out nutrients, or they may produce enzymes to exploit alternative resources. One example of an extreme survival strategy employed by certain low G+C Gram-positive bacteria is the formation of endospores. This complex developmental process is often initiated in response to nutrient deprivation. It allows the bacterium to produce a dormant and highly resistant cell to preserve the cell's genetic material in times of extreme stress.

Endospores can survive environmental assaults that would normally kill the bacterium. These stresses include high temperature, high UV irradiation, desiccation, chemical damage and enzymatic destruction. The extraordinary resistance properties of endospores make them of particular importance because they are not readily killed by many antimicrobial treatments. A variety of different microorganisms form "spores" or "cysts", but the endospores of low G+C Gram-positive bacteria are by far the most resistant to harsh conditions.

Endospore Structure

The resilience of an endospore can be explained in part by its unique cellular structure. The outer proteinaceous coat surrounding the spore provides much of the chemical and enzymatic resistance. Beneath the coat resides a very thick layer of specialized peptidoglycan called the cortex. Proper cortex formation is needed for dehydration of the spore core, which aids in resistance to high temperature. A germ cell wall resides under the cortex. This layer of peptidoglycan will become the cell wall of the bacterium after the endospore germinates. The inner membrane, under the germ cell wall, is a major permeability barrier against several potentially damaging chemicals. The center of the endospore, the core, exists in a very dehydrated state and houses the cell's DNA, ribosomes and large amounts of dipicolinic acid. This endospore-specific chemical can comprise up to 10% of the spore's dry weight and appears to play a role in maintaining spore dormancy. Small acid-soluble proteins (SASPs) are also only found in endospores. These proteins tightly bind and condense the DNA, and are in part responsible for resistance to UV light and DNA-damaging chemicals. Other species-specific structures and chemicals associated with endospores include stalks, toxin crystals, or an additional outer glycoprotein layer called the exosporium.

Endospore Development

The process of forming an endospore is complex. The model organism used to study endospore formation is Bacillus subtilis. Endospore development requires several hours to complete. Key morphological changes in the process have been used as markers to define stages of development. As a cell begins the process of forming an endospore, it divides asymmetrically (Stage II). This results in the creation of two compartments, the larger mother cell and the smaller forespore. These two cells have different developmental fates. Intercellular communication systems coordinate cell-specific gene expression through the sequential activation of specialized sigma factors in each of the cells. Next (Stage III), the peptidoglycan in the septum is degraded and the forespore is engulfed by the mother cell, forming a cell within a cell. The activities of the mother cell and forespore lead to the synthesis of the endospore-specific compounds, formation of the cortex and deposition of the coat (Stages IV+V). This is followed by the final dehydration and maturation of the endospore (Stages VI+VII). Finally, the mother cell is destroyed in a programmed cell death, and the endospore is released into the environment. The endospore will remain dormant until it senses the return of more favorable conditions. [A sigma factor is a small protein that directs RNA polymerase to specific cites on DNA to initiate gene expression.]

Endospores and Epulopiscium

Some Epulopiscium-like surgeonfish symbionts form mature endospores at night. These spores possess all of the characteristic protective layers seen in B. subtilis endospores and also contain large amounts of dipicolinic acid. These are the largest endospores described thus far, with the largest being over 4000 times larger than a Bacillus subtilis endospore.

The formation of endospores may help maintain the symbiotic association between these Epulopiscium-like symbionts and their surgeonfish hosts. Since endospore formation coincides with periods in which the host surgeonfish is not actively feeding, the cells do not need to compete for the limited nutrients present in the gut at night. The protective properties of the endospores also allow them to survive passage to new surgeonfish hosts. The fish may also benefit from this relationship because it is able to maintain stable microbial populations that assist in digestion and may receive a nutritional gain from microbial products released during mother cell death and spore germination.

Daily life cycle of endospore-forming Epulopiscium-like symbionts.

Endospore formation in some Epulopiscium-like symbionts follows a daily cycle:

  1. Polar septa are formed at the poles of the cell.
  2. Forespores become engulfed.
  3. Forespores gradually increase in size within the mother cell through the day.
  4. In late afternoon, final preparations for endospore dormancy.
  5. Endospores mature and remain dormant throughout most of the night.
  6. Just before sunrise, the endospores germinate and are released from mother cell to repeat the cycle.