What are the main natural resources of the Transition Zone

1. Li, X., Yang, K. & Zhou, Y. Progress in the study of oasis-desert interactions (2016).

2. Mao D, et al. Characteristics of wind erosion and deposition in oasis-desert ecotone in southern margin of Tarim Basin, China. Chinese geographical science. 2014;24:658–673. doi: 10.1007/s11769-014-0725-y. [CrossRef] [Google Scholar]

3. Chen J, Hu Y, Lü S, Yu Y. Influence of advection on the characteristics of turbulence over uneven surface in the oasis and the Gobi Desert. Science China Earth Sciences. 2014;57:2242–2258. doi: 10.1007/s11430-014-4910-8. [CrossRef] [Google Scholar]

4. Matchanov M, Teodoro A, Schroder C. Criterion definition for the identification of physical-geographical boundaries of Khorezm oasis through remotely sensed data. Environmental monitoring and assessment. 2016;188:35. doi: 10.1007/s10661-015-5035-z. [PubMed] [CrossRef] [Google Scholar]

5. Kogan FN. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society. 1995;76:655–668. doi: 10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2. [CrossRef] [Google Scholar]

6. AghaKouchak A, et al. Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics. 2015;53:452–480. doi: 10.1002/2014RG000456. [CrossRef] [Google Scholar]

7. Arekhi, M., Saglam, S. & Ozkan, U. Y. Drought monitoring and assessment using Landsat TM/OLI data in the agricultural lands of Bandar-e-Turkmen and Gomishan cities, Iran. Environment, Development and Sustainability, 1–18 (2019).

8. Wan Z, Wang P, Li X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International journal of remote sensing. 2004;25:61–72. doi: 10.1080/0143116031000115328. [CrossRef] [Google Scholar]

9. Bandos TV, Bruzzone L, Camps-Valls G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing. 2009;47:862–873. doi: 10.1109/TGRS.2008.2005729. [CrossRef] [Google Scholar]

10. Carlson TN, Gillies RR, Perry EM. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews. 1994;9:161–173. doi: 10.1080/02757259409532220. [CrossRef] [Google Scholar]

11. Jain SK, Keshri R, Goswami A, Sarkar A. Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India. Natural hazards. 2010;54:643–656. doi: 10.1007/s11069-009-9493-x. [CrossRef] [Google Scholar]

12. Zhao W, Chang X. The effect of hydrologic process changes on NDVI in the desert-oasis ecotone of the Hexi Corridor. Science China Earth Sciences. 2014;57:3107–3117. doi: 10.1007/s11430-014-4927-z. [CrossRef] [Google Scholar]

13. Wang, J. 1:100,000 scale desert distribution mapset of China, http://westdc.westgis.ac.cn (2006).

14. Li, F., Zhao, W., & Liu, H. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of northwest China. PLoS One, 8 (2013). [PMC free article] [PubMed]

15. Zhao W, et al. Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China. Agricultural Water Management. 2018;208:478–489. doi: 10.1016/j.agwat.2018.06.035. [CrossRef] [Google Scholar]

16. Gökgöz T, Baker MKM. Large scale landform mapping using Lidar DEM. ISPRS International Journal of Geo-Information. 2015;4:1336–1345. doi: 10.3390/ijgi4031336. [CrossRef] [Google Scholar]

17. He Z, Zhao W, Chang X, Chang X, Fang J. Scale dependence in desert plant diversity. Biodiversity & Conservation. 2006;15:3055–3064. doi: 10.1007/s10531-005-5396-7. [CrossRef] [Google Scholar]

18. Levin SA. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology. 1992;73:1943–1967. doi: 10.2307/1941447. [CrossRef] [Google Scholar]

19. Liu X, et al. Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences. 2016;26:750–767. doi: 10.1007/s11442-016-1297-9. [CrossRef] [Google Scholar]

20. Patel NR, Parida BR, Venus V, Saha SK, Dadhwal VK. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Environmental monitoring and assessment. 2012;184:7153–7163. doi: 10.1007/s10661-011-2487-7. [PubMed] [CrossRef] [Google Scholar]

21. Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A. Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using vegetation health index (VHI) in Raya and its environs, northern Ethiopia. Environmental Systems Research. 2018;7:13. doi: 10.1186/s40068-018-0115-z. [CrossRef] [Google Scholar]

22. Khan J, Wang P, Xie Y, Wang L, Li L. Mapping MODIS LST NDVI imagery for drought monitoring in Punjab Pakistan. IEEE Access. 2018;6:19898–19911. doi: 10.1109/ACCESS.2018.2821717. [CrossRef] [Google Scholar]

23. Maduako IN, Ndukwu RI, Ifeanyichukwu C, Igbokwe O. Multi-index soil moisture estimation from satellite earth observations: comparative evaluation of the topographic wetness index (TWI), the temperature vegetation dryness index (TVDI) and the improved TVDI (iTVDI) Journal of the Indian Society of Remote Sensing. 2017;45:631–642. doi: 10.1007/s12524-016-0635-9. [CrossRef] [Google Scholar]

24. Wang L, et al. Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index. Computers and Electronics in Agriculture. 2019;160:82–90. doi: 10.1016/j.compag.2019.03.017. [CrossRef] [Google Scholar]

25. Sun W, et al. Using the vegetation temperature condition index for time series drought occurrence monitoring in the Guanzhong Plain, PR China. International Journal of Remote Sensing. 2008;29:5133–5144. doi: 10.1080/01431160802036557. [CrossRef] [Google Scholar]

26. Vancutsem C, Ceccato P, Dinku T, Connor SJ. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment. 2010;114:449–465. doi: 10.1016/j.rse.2009.10.002. [CrossRef] [Google Scholar]

27. Wu, J. & Hobbs, R. J. (Eds.). Key Topics In Landscape Ecology. Cambridge University Press. (2007).


Page 2

PMC full text:

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

What are the main natural resources of the Transition Zone

NDVI and TCI distribution maps of different scales in the oasis desert transition zone (a, NDVI 90 m; b, NDVI 330 m; c, TCI 90 m; d, TCI 330 m).

  • What are the main natural resources of the Transition Zone
  • What are the main natural resources of the Transition Zone
  • What are the main natural resources of the Transition Zone
  • What are the main natural resources of the Transition Zone

Click on the image to see a larger version.