In a two-factor, independent-measures ANOVA, when is FA guaranteed to be equal to FB

  • Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Algina, J., & Keselman, H. J. (1997). Detecting repeated measures effects with univariate and multivariate statistics. Psychological Methods, 2, 208–218.

    Article  Google Scholar 

  • Algina, J., & Keselman, H. J. (1998). A power comparison of the Welch–James and improved general approximation tests in the split-plot design. Journal of Educational and Behavioral Statistics, 23, 152–169.

    Google Scholar 

  • Algina, J., & Oshima, T. C. (1994). Type I error rates for Huynh’s general approximation and improved general approximation tests. British Journal of Mathematical and Statistical Psychology, 47, 151–165.

    Article  Google Scholar 

  • Arnau, J., Bono, R., & Vallejo, G. (2009). Analyzing small samples of repeated measures data with the mixed-model adjusted F test. Communications in Statistics: Simulation and Computation, 38, 1083–1103. doi:10.1080/03610910902785746

    Article  Google Scholar 

  • Austin, P. J. (2010). Estimating multilevel logistic regression models when the number of clusters is low: A comparison of different statistical software procedures. International Journal of Biostatistics, 6(1), 16. doi:10.2202/1557-4679.1195

    Google Scholar 

  • Berkovits, I., Hancock, G. R., & Nevitt, J. (2000). Bootstrap resampling approaches for repeated measure designs: Relative robustness to sphericity and normality violations. Educational and Psychological Measurement, 60, 877–892.

    Article  Google Scholar 

  • Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems. II. Effects of inequality of variance and of correlation between errors in the two-way classification. Annals of Mathematical Statistics, 25, 484–498.

    Article  Google Scholar 

  • Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31, 144–152.

    Article  Google Scholar 

  • Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9–25.

    Google Scholar 

  • Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3, 243–249. doi:10.1038/Nrn756

    PubMed  Article  Google Scholar 

  • Brunner, E., Munzel, U., & Puri, M. L. (1999). Rank-score tests in factorial designs with repeated measures. Journal of Multivariate Analysis, 70, 286–317.

    Article  Google Scholar 

  • Brunner, E., & Puri, M. L. (2001). Nonparametric methods in factorial designs. Statistical Papers, 42, 1–52.

    Article  Google Scholar 

  • Benoit, C. (1924). Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des moindres carrés à un système d’équations linéaires en nombre inférieur à celui des inconnues—Application de la méthode à la résolution d’un système defini d’équations linéaires (Procédé du Commandant Cholesky). Bulletin Géodésique, 2, 67–77. doi:10.1007/BF03031308

    Article  Google Scholar 

  • Davidian, M., & Giltinan, D. M. (1998). Nonlinear models for repeated measurement data. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Davidian, M., & Giltinan, D. M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural, Biological, and Environmental Statistics, 8, 387–419. doi:10.1198/1085711032697

    Article  Google Scholar 

  • DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2, 292–307. doi:10.1037/1082-989x.2.3.292

    Article  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi:10.1037/0033-295X.96.3.433

    PubMed  Article  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. doi:10.3758/BF03203267

    Article  Google Scholar 

  • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433. doi:10.1038/415429a

    PubMed  Article  Google Scholar 

  • Fleishman, A. I. (1978). Method for simulating non-normal distributions. Psychometrika, 43, 521–532.

    Article  Google Scholar 

  • Florentine, M., Buus, S., & Poulsen, T. (1996). Temporal integration of loudness as a function of level. Journal of the Acoustical Society of America, 99, 1633–1644.

    PubMed  Article  Google Scholar 

  • Fouladi, R. T., & Shieh, Y. Y. (2004). A comparison of two general approaches to mixed model longitudinal analyses under small sample size conditions. Communications in Statistics: Simulation and Computation, 33, 807–824.

    Article  Google Scholar 

  • Games, P. A. (1983). Curvilinear transformations of the dependent variable. Psychological Bulletin, 93, 382–387. doi:10.1037/0033-2909.93.2.382

    Article  Google Scholar 

  • Games, P. A. (1984). Data transformations, power, and skew: A rebuttal to Levine and Dunlap. Psychological Bulletin, 95, 345–347. doi:10.1037/0033-2909.95.2.345

    Article  Google Scholar 

  • Geisser, S., & Greenhouse, S. W. (1958). An extension of Box’s results on the use of the F distribution in multivariate analysis. Annals of Mathematical Statistics, 29, 885–891.

    Article  Google Scholar 

  • Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. Review of Educational Research, 42, 237–288. doi:10.3102/00346543042003237

    Article  Google Scholar 

  • Gomez, E. V., Schaalje, G. B., & Fellingham, G. W. (2005). Performance of the Kenward–Roger method when the covariance structure is selected using AIC and BIC. Communications in Statistics: Simulation and Computation, 34, 377–392.

    Article  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York, NY: Wiley.

    Google Scholar 

  • Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95–112. doi:10.1007/BF02289823

    Article  Google Scholar 

  • Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing Monte-Carlo results in methodological research: The one-factor and two-factor fixed effects ANOVA cases. Journal of Educational Statistics, 17, 315–339. doi:10.3102/10769986017004315

    Article  Google Scholar 

  • Hays, W. L. (1988). Statistics (4th ed.). Fort Worth, TX: Holt, Rinehart & Winston.

    Google Scholar 

  • Headrick, T. C. (2002). Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions. Computational Statistics & Data Analysis, 40, 685–711.

    Article  Google Scholar 

  • Headrick, T. C., & Kowalchuk, R. K. (2007). The power method transformation: Its probability density function, distribution function, and its further use for fitting data. Journal of Statistical Computation and Simulation, 77, 229–249. doi:10.1080/10629360600605065

    Article  Google Scholar 

  • Headrick, T. C., Kowalchuk, R. K., & Sheng, Y. (2010). Parametric probability densities and distribution functions for Tukey g- and -h transformations and their use for fitting data. Applied Mathematical Sciences, 2, 449–462.

    Google Scholar 

  • Headrick, T. C., Sheng, Y. Y., & Hodis, F. A. (2007). Numerical computing and graphics for the power method transformation using Mathematica. Journal of Statistical Software, 19(3), 1–17.

    Google Scholar 

  • Hearne, E. M., Clark, G. M., & Hatch, J. P. (1983). A test for serial correlation in univariate repeated-measures analysis. Biometrics, 39, 237–243.

    PubMed  Article  Google Scholar 

  • Heathcote, A., Brown, S., & Cousineau, D. (2004). QMPE: Estimating lognormal, Wald, and Weibull RT distributions with a parameter-dependent lower bound. Behavior Research Methods, Instruments, & Computers, 36, 277–290. doi:10.3758/bf03195574

    Article  Google Scholar 

  • Hotelling, H. (1931). The generalization of Student’s ratio. Annals of Mathematical Statistics, 2, 360–378. doi:10.1214/aoms/1177732979

    Article  Google Scholar 

  • Hu, F. B., Goldberg, J., Hedeker, D., Flay, B. R., & Pentz, M. A. (1998). Comparison of population-averaged and subject-specific approaches for analyzing repeated binary outcomes. American Journal of Epidemiology, 147, 694–703.

    PubMed  Article  Google Scholar 

  • Huynh, H., & Feldt, L. S. (1970). Conditions under which mean square ratios in repeated measurements designs have exact F-distributions. Journal of the American Statistical Association, 65, 1582–1589.

    Article  Google Scholar 

  • Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1, 69–82. doi:10.2307/1164736

    Article  Google Scholar 

  • Huynh, H., & Mandeville, G. K. (1979). Validity conditions in repeated measures designs. Psychological Bulletin, 86, 964–973. doi:10.1037/0033-2909.86.5.964

    Article  Google Scholar 

  • Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446. doi:10.1016/j.jml.2007.11.007

    PubMed  Article  Google Scholar 

  • Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42, 805–820. doi:10.2307/2530695

    PubMed  Article  Google Scholar 

  • Jin, Y., Hein, M. J., Deddens, J. A., & Hines, C. J. (2011). Analysis of lognormally distributed exposure data with repeated measures and values below the limit of detection using SAS. Annals of Occupational Hygiene, 55, 97–112. doi:10.1093/annhyg/meq061

    PubMed  Article  Google Scholar 

  • Kaiser, H. F., & Dickman, K. (1962). Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix. Psychometrika, 27, 179–182.

    Article  Google Scholar 

  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.

    PubMed  Google Scholar 

  • Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. doi:10.2307/2533558

    PubMed  Article  Google Scholar 

  • Kenward, M. G., & Roger, J. H. (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 2583–2595. doi:10.1016/j.csda.2008.12.013

    Article  Google Scholar 

  • Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated measures designs: A review. British Journal of Mathematical and Statistical Psychology, 54, 1–20.

    PubMed  Article  Google Scholar 

  • Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2002). A comparison of data analysis strategies for testing omnibus effects in higher-order repeated measures designs. Multivariate Behavioral Research, 37, 331–357.

    Article  Google Scholar 

  • Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999a). The analysis of repeated measurements: A comparison of mixed-model Satterthwaite F tests and a nonpooled adjusted degrees of freedom multivariate test. Communications in Statistics: Theory and Methods, 28, 2967–2999.

    Article  Google Scholar 

  • Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999b). A comparison of recent approaches to the analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology, 52, 63–78.

    Article  Google Scholar 

  • Keselman, H. J., Carriere, K. C., & Lix, L. M. (1993). Testing repeated-measures hypotheses when covariance matrices are heterogeneous. Journal of Educational Statistics, 18, 305–319.

    Article  Google Scholar 

  • Keselman, H. J., Keselman, J. C., & Lix, L. M. (1995). The analysis of repeated measurements: Univariate tests, multivariate tests, or both? British Journal of Mathematical and Statistical Psychology, 48, 319–338.

    Article  Google Scholar 

  • Keselman, H. J., Kowalchuk, R. K., Algina, J., Lix, L. M., & Wilcox, R. R. (2000a). Testing treatment effects in repeated measures designs: Trimmed means and bootstrapping. British Journal of Mathematical and Statistical Psychology, 53, 175–191.

    PubMed  Article  Google Scholar 

  • Keselman, H. J., Kowalchuk, R. K., & Boik, R. J. (2000b). An examination of the robustness of the empirical Bayes and other approaches for testing main and interaction effects in repeated measures designs. British Journal of Mathematical and Statistical Psychology, 53, 51–67.

    PubMed  Article  Google Scholar 

  • Keselman, H. J., Rogan, J. C., Mendoza, J. L., & Breen, L. J. (1980). Testing the validity conditions of repeated measures F-tests. Psychological Bulletin, 87, 479–481.

    Article  Google Scholar 

  • Kowalchuk, R. K., Keselman, H. J., Algina, J., & Wolfinger, R. D. (2004). The analysis of repeated measurements with mixed-model adjusted F tests. Educational and Psychological Measurement, 64, 224–242. doi:10.1177/0013164403260196

    Article  Google Scholar 

  • Kubinger, K. D., Rasch, D., & Moder, K. (2009). Zur Legende der Voraussetzungen des t-Tests für unabhängige Stichproben [On the legend of the prerequisites of t-tests for independent samples]. Psychologische Rundschau, 60, 26–27. doi:10.1026/0033-3042.60.1.26

    Article  Google Scholar 

  • Kuss, O. (2002, April). How to use SAS for logistic regression with correlated data. Paper presented at the 27th Annual SAS Users Group International Conference, Orlando, FL.

  • Le Cam, L. (1986). The central limit theorem around 1935. Statistical Science, 1, 78–91.

    Article  Google Scholar 

  • Lecoutre, B. (1991). A correction for the epsilon approximate test in repeated measures designs with two or more independent groups. Journal of Educational Statistics, 16, 371–372.

    Article  Google Scholar 

  • Lee, Y., & Nelder, J. A. (2001). Modelling and analysing correlated non-normal data. Statistical Modelling, 1, 3–16. doi:10.1177/1471082x0100100102

    Article  Google Scholar 

  • Levine, D. W., & Dunlap, W. P. (1982). Power of the F test with skewed data: Should one transform or not? Psychological Bulletin, 92, 272–280. doi:10.1037/0033-2909.92.1.272

    Article  Google Scholar 

  • Levine, D. W., & Dunlap, W. P. (1983). Data transformation, power, and skew: A rejoinder to Games. Psychological Bulletin, 93, 596–599. doi:10.1037/0033-2909.93.3.596

    Article  Google Scholar 

  • Lipsitz, S. R., Kim, K., & Zhao, L. P. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 13, 1149–1163.

    PubMed  Article  Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models (2nd ed.). Cary, NC: SAS Institute, Inc.

    Google Scholar 

  • Littell, R. C., Pendergast, J., & Natarajan, R. (2000). Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine, 19, 1793–1819. doi:10.1002/1097-0258(20000715)19:13<1793::aid-sim482>3.3.co;2-h

    PubMed  Article  Google Scholar 

  • Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579–619. doi:10.2307/1170654

    Google Scholar 

  • Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. New York, NY: Oxford University Press.

    Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203. doi:10.1037/0033-2909.109.2.163

    PubMed  Article  Google Scholar 

  • Mauchly, J. W. (1940). Significance test for sphericity of n-variate normal populations. Annals of Mathematical Statistics, 11, 204–209.

    Article  Google Scholar 

  • Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London, U.K.: Chapman and Hall.

    Google Scholar 

  • Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423–1442. doi:10.1037/0278-7393.22.6.1423

    Article  Google Scholar 

  • Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166.

    Article  Google Scholar 

  • Muller, K. E., Edwards, L. J., Simpson, S. L., & Taylor, D. J. (2007). Statistical tests with accurate size and power for balanced linear mixed models. Statistics in Medicine, 26, 3639–3660.

    PubMed  Article  Google Scholar 

  • Neuhaus, J. M., Kalbfleisch, J. D., & Hauck, W. W. (1991). A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Review, 59, 25–35.

    Article  Google Scholar 

  • Padilla, M. A., & Algina, J. (2004). Type I error rates for a one factor within-subjects design with missing values. Journal of Modern Applied Statistical Methods, 3, 406–416.

    PubMed  Google Scholar 

  • Palmer, E. M., Horowitz, T. S., Torralba, A., & Wolfe, J. M. (2011). What are the shapes of response time distributions in visual search? Journal of Experimental Psychology. Human Perception and Performance, 37, 58–71. doi:10.1037/a0020747

    PubMed  Article  Google Scholar 

  • Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M., & Fisher, M. R. (1996). A survey of methods for analyzing clustered binary response data. International Statistical Review, 64, 89–118.

    Article  Google Scholar 

  • Potvin, P. J., & Schutz, R. W. (2000). Statistical power for the two-factor repeated measures ANOVA. Behavior Research Methods, Instruments, & Computers, 32, 347–356. doi:10.3758/bf03207805

    Article  Google Scholar 

  • Quintana, S. M., & Maxwell, S. E. (1994). A Monte-Carlo comparison of seven epsilon-adjustment procedures in repeated-measures designs with small sample sizes. Journal of Educational Statistics, 19, 57–71.

    Article  Google Scholar 

  • Rasmussen, J. L. (1989). Data transformation, Type I error rate and power. British Journal of Mathematical and Statistical Psychology, 42, 203–213.

    Article  Google Scholar 

  • Rouanet, H., & Lépine, D. (1970). Comparison between treatments in a repeated-measurement design: ANOVA and multivariate methods. British Journal of Mathematical and Statistical Psychology, 23, 147–163.

    Article  Google Scholar 

  • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–590.

    Article  Google Scholar 

  • Sams, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology, 62, 437–448.

    PubMed  Article  Google Scholar 

  • Sawilowsky, S. S., & Blair, R. C. (1992). A more realistic look at the robustness and Type-II error properties of the t test to departures from population normality. Psychological Bulletin, 111, 352–360.

    Article  Google Scholar 

  • Schaalje, G. B., McBride, J. B., & Fellingham, G. W. (2002). Adequacy of approximations to distributions of test statistics in complex mixed linear models. Journal of Agricultural, Biological, and Environmental Statistics, 7, 512–524.

    Article  Google Scholar 

  • Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology, 6, 147–151. doi:10.1027/1614-2241/a000016

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464. doi:10.1214/aos/1176344136

    Article  Google Scholar 

  • Skene, S. S., & Kenward, M. G. (2010a). The analysis of very small samples of repeated measurements I: An adjusted sandwich estimator. Statistics in Medicine, 29, 2825–2837. doi:10.1002/sim.4073

    PubMed  Article  Google Scholar 

  • Spiess, M., & Hamerle, A. (2000). A comparison of different methods for the estimation of regression models with correlated binary responses. Computational Statistics and Data Analysis, 33, 439–455.

    Article  Google Scholar 

  • Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology. General, 123, 34–80. doi:10.1037/0096-3445.123.1.34

    PubMed  Article  Google Scholar 

  • Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465–471.

    Article  Google Scholar 

  • Vallejo, G., & Livacic-Rojas, P. (2005). Comparison of two procedures for analyzing small sets of repeated measures data. Multivariate Behavioral Research, 40, 179–205.

    Article  Google Scholar 

  • Vallejo Seco, G., Izquierdo, M. C., Garcia, M. P. F., & Diez, R. J. H. (2006). A comparison of the bootstrap-F, improved general approximation, and Brown–Forsythe multivariate approaches in a mixed repeated measures design. Educational and Psychological Measurement, 66, 35–62.

    Article  Google Scholar 

  • Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7, 424–465. doi:10.3758/BF03214357

    Article  Google Scholar 

  • Vonesh, E. F., & Chinchilli, V. M. (1997). Linear and nonlinear models for the analysis of repeated measurements. New York, NY: Dekker.

    Google Scholar 

  • Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Amsterdam, The Netherlands: Elsevier/Academic Press.

    Google Scholar 

  • Wilcox, R. R., & Keselman, H. J. (2003). Repeated measures one-way ANOVA based on a modified one-step M-estimator. British Journal of Mathematical and Statistical Psychology, 56, 15–25.

    PubMed  Article  Google Scholar 

  • Wilcox, R. R., Keselman, H. J., Muska, J., & Cribbie, R. (2000). Repeated measures ANOVA: Some new results on comparing trimmed means and means. British Journal of Mathematical and Statistical Psychology, 53, 69–82.

    PubMed  Article  Google Scholar 

  • Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design (3rd ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  • Wolfinger, R. D. (1996). Heterogeneous variance: Covariance structures for repeated measures. Journal of Agricultural, Biological, and Environmental Statistics, 1, 205–230.

    Article  Google Scholar 

Page 2

From: Evaluating the robustness of repeated measures analyses: The case of small sample sizes and nonnormal data

Compound symmetric (CS) (2 parameters) \( {\sigma^2}\left[ {\begin{array}{*{20}c} 1 \hfill & \rho \hfill & \rho \hfill & \rho \hfill \\ {} \hfill & 1 \hfill & \rho \hfill & \rho \hfill \\ {} \hfill & {} \hfill & 1 \hfill & \rho \hfill \\ {} \hfill & {} \hfill & {} \hfill & 1 \hfill \\ \end{array}} \right] \) Random coefficients (RC) (4 parameters) \( \left[ {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & {K-1} \\ \end{array}} \right]\left[ {\begin{array}{*{20}c} {{\sigma_{11 }}} & {{\sigma_{12 }}} \\ {{\sigma_{12 }}} & {{\sigma_{22 }}} \\ \end{array}} \right]\left[ {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & {K-1} \\ \end{array}} \right]+\left[ {\begin{array}{*{20}c} {\sigma^2 } & {} & {} & {} \\ {} & {\sigma^2 } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\sigma^2 } \\ \end{array}} \right] \)
Unstructured (UN) (\( {{{K\left[ {K+1} \right]}} \left/ {2} \right.} \) parameters) \( \begin{array}{*{20}c} {\sigma_{11}^2} & {{\sigma_{12 }}} & {{\sigma_{13 }}} & \cdots & {{\sigma_{1K }}} \\ {} & {\sigma_{22}^2} & {{\sigma_{23 }}} & \cdots & {{\sigma_{2K }}} \\ {} & {} & {\sigma_{33}^2} & \cdots & {{\sigma_{3K }}} \\ {} & {} & {} & \ddots & \vdots \\ {} & {} & {} & {} & {\sigma_{KK}^2} \\ \end{array} \) Heterogeneous first-order autoregressive [ARH(1)] (K + 1 parameters) \( \begin{array}{*{20}c} {\sigma_1^2} & {\sigma_1 {\sigma_2}\rho } & {\sigma_1 {\sigma_3}{\rho^3}} & \cdots & {\sigma_1 {\sigma_K}{\rho^{K-1 }}} \\ {} & {\sigma_2^2} & {\sigma_2 {\sigma_3}\rho } & \cdots & {\sigma_2 {\sigma_K}{\rho^{K-2 }}} \\ {} & {} & {\sigma_3^2} & \cdots & {\sigma_3 {\sigma_K}{\rho^{K-3 }}} \\ {} & {} & {} & \ddots & \vdots \\ {} & {} & {} & {} & {\sigma_K^2} \\ \end{array} \)

  1. Only the upper diagonal of the symmetric matrices is shown. The CS structure is displayed for four factor levels (K = 4). For higher K, the K × K correlation matrix again has 1 on the main diagonal and ρ elsewhere.

Neuester Beitrag

Stichworte